8 research outputs found

    Bomb radiocarbon evidence for strong global carbon uptake and turnover in terrestrial vegetation

    Get PDF
    Vegetation and soils are taking up approximately 30% of anthropogenic CO2 emissions because of small imbalances in large gross carbon exchanges from productivity and turnover that are poorly constrained. We combine a new budget of radiocarbon (14C) produced by nuclear bomb testing in the 1960s with model simulations to evaluate carbon cycling in terrestrial vegetation. We find that most state-of-the-art vegetation models used in the Coupled Model Intercomparison Project underestimate the 14C accumulation in vegetation biomass. Our findings, combined with constraints on vegetation carbon stocks and productivity trends, imply that net primary productivity is likely at least 80 PgC/yr presently, compared to 43-76 PgC/yr predicted by current models. Storage of anthropogenic carbon in terrestrial vegetation is likely more short-lived and vulnerable than previously predicted

    Global forest management data for 2015 at a 100 m resolution

    Get PDF
    Spatially explicit information on forest management at a global scale is critical for understanding the status of forests, for planning sustainable forest management and restoration, and conservation activities. Here, we produce the first reference data set and a prototype of a globally consistent forest management map with high spatial detail on the most prevalent forest management classes such as intact forests, managed forests with natural regeneration, planted forests, plantation forest (rotation up to 15 years), oil palm plantations, and agroforestry. We developed the reference dataset of 226 K unique locations through a series of expert and crowdsourcing campaigns using Geo-Wiki (https://www.geo-wiki.org/). We then combined the reference samples with time series from PROBA-V satellite imagery to create a global wall-to-wall map of forest management at a 100 m resolution for the year 2015, with forest management class accuracies ranging from 58% to 80%. The reference data set and the map present the status of forest ecosystems and can be used for investigating the value of forests for species, ecosystems and their services

    Cropland abandonment between 1986 and 2018 across the United States: spatiotemporal patterns and current land uses

    No full text
    Knowing where and when croplands have been abandoned or otherwise removed from cultivation is fundamental to evaluating future uses of these areas, e.g. as sites for ecological restoration, recultivation, bioenergy production, or other uses. However, large uncertainties remain about the location and time of cropland abandonment and how this process and the availability of associated lands vary spatially and temporally across the United States. Here, we present a nationwide, 30 m resolution map of croplands abandoned throughout the period of 1986–2018 for the conterminous United States (CONUS). We mapped the location and time of abandonment from annual cropland layers we created in Google Earth Engine from 30 m resolution Landsat imagery using an automated classification method and training data from the U.S. Department of Agriculture Cropland Data Layer. Our abandonment map has overall accuracies of 0.91 and 0.65 for the location and time of abandonment, respectively. From 1986 to 2018, 12.3 (±2.87) million hectares (Mha) of croplands were abandoned across CONUS, with areas of greatest change over the Ogallala Aquifer, the southern Mississippi Alluvial Plain, the Atlantic Coast, North Dakota, northern Montana, and eastern Washington state. The average annual nationwide abandoned area across our study period was 0.51 Mha per year. Annual abandonment peaked between 1997 and 1999 at a rate of 0.63 Mha year ^−1 , followed by a continuous decrease to 0.41 Mha year ^−1 in 2009–2011. Among the abandoned croplands, 53% (6.5 Mha) changed to grassland and pasture, 18.6% (2.28 Mha) to shrubland and forest, 8.4% (1.03 Mha) to wetlands, and 4.6% (0.56 Mha) to non-vegetated lands. Of the areas that we mapped as abandoned, 19.6% (2.41 Mha) were enrolled in the Conservation Reserve Program as of 2020. Our new map highlights the long-term dynamic nature of agricultural land use and its relation to various competitive pressures and land use policies in the United States

    Land use leverage points to reduce GHG emissions in U.S. agricultural supply chains

    No full text
    Recognizing the substantial threats climate change poses to agricultural supply chains, companies around the world are committing to reducing greenhouse gas (GHG) emissions. Recent modeling advances have increased the transparency of meat and ethanol industry supply chains, where conventional production practices and associated environmental impacts have been characterized and linked to downstream points of demand. Yet, to date, information and efforts have neglected both the spatial variability of production impacts and land use changes (LUCs) across highly heterogeneous agricultural landscapes. Developing effective mitigation programs and policies requires understanding these spatially-explicit hotspots for targeting GHG mitigation efforts and the links to downstream supply chain actors. Here we integrate, for the first time, spatial estimates of county-scale production practices and observations of direct LUC into company and industry-specific supply chains of beef, pork, chicken, ethanol, soy oil and wheat flour in the U.S., thereby conceptually changing our understanding of the sources, magnitudes and influencers of agricultural GHG emissions. We find that accounting for LUC can increase estimated feedstock emissions per unit of production by a factor of 2- to 5-times that of traditionally used estimates. Substantial variation across companies, sectors, and production regions reveal key opportunities to improve GHG footprints by reducing land conversion within their supply chains

    Comment on ‘Carbon Intensity of corn ethanol in the United States: state of the science’

    No full text
    In their recent contribution, Scully et al (2021 Environ. Res. Lett. 16 043001) review and revise past life cycle assessments of corn-grain ethanol’s carbon (C) intensity to suggest that a current ‘central best estimate’ is considerably less than all prior estimates. Their conclusion emerges from selection and recombination of sector-specific greenhouse gas emission predictions from disparate studies in a way that disproportionately favors small values and optimistic assumptions without rigorous justification nor empirical support. Their revisions most profoundly reduce predicted land use change (LUC) emissions, for which they propose a central estimate that is roughly half the smallest comparable value they review (figure 1). This LUC estimate represents the midpoint of (a) values retained after filtering the predictions of past studies based on a set of unfounded criteria; and (b) a new estimate they generate for domestic (i.e. U.S.) LUC emissions. The filter the authors apply endorses a singular means of LUC assessment which they assert as the ‘best practice’ despite a recent unacknowledged review (Malins et al 2020 J. Clean. Prod. 258 120716) that shows this method almost certainly underestimates LUC. Moreover, their domestic C intensity estimate surprisingly suggests that cropland expansion newly sequesters soil C, counter to ecological theory and empirical evidence. These issues, among others, prove to grossly underestimate the C intensity of corn-grain ethanol and mischaracterize the state of our science at the risk of perversely affecting policy outcomes

    Environmental outcomes of the US Renewable Fuel Standard

    No full text
    The Renewable Fuel Standard (RFS) specifies the use of biofuels in the United States and thereby guides nearly half of all global biofuel production, yet outcomes of this keystone climate and environmental regulation remain unclear. Here we combine econometric analyses, land use observations, and biophysical models to estimate the realized effects of the RFS in aggregate and down to the scale of individual agricultural fields across the United States. We find that the RFS increased corn prices by 30% and the prices of other crops by 20%, which, in turn, expanded US corn cultivation by 2.8 Mha (8.7%) and total cropland by 2.1 Mha (2.4%) in the years following policy enactment (2008 to 2016). These changes increased annual nationwide fertilizer use by 3 to 8%, increased water quality degradants by 3 to 5%, and caused enough domestic land use change emissions such that the carbon intensity of corn ethanol produced under the RFS is no less than gasoline and likely at least 24% higher. These tradeoffs must be weighed alongside the benefits of biofuels as decision-makers consider the future of renewable energy policies and the potential for fuels like corn ethanol to meet climate mitigation goals

    Global forest management data for 2015 at a 100 m resolution

    No full text
    Spatially explicit information on forest management at a global scale is critical for understanding the status of forests, for planning sustainable forest management and restoration, and conservation activities. Here, we produce the first reference data set and a prototype of a globally consistent forest management map with high spatial detail on the most prevalent forest management classes such as intact forests, managed forests with natural regeneration, planted forests, plantation forest (rotation up to 15 years), oil palm plantations, and agroforestry. We developed the reference dataset of 226 K unique locations through a series of expert and crowdsourcing campaigns using Geo-Wiki (https://www.geo-wiki.org/). We then combined the reference samples with time series from PROBA-V satellite imagery to create a global wall-to-wall map of forest management at a 100 m resolution for the year 2015, with forest management class accuracies ranging from 58% to 80%. The reference data set and the map present the status of forest ecosystems and can be used for investigating the value of forests for species, ecosystems and their services
    corecore