18 research outputs found

    Summer methane ebullition from a headwater catchment in Northeastern Siberia

    Get PDF
    Streams and rivers are active processors of terrestrial carbon and significant sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere. Recent studies suggest that ebullition may represent a sizable yet overlooked component of the total CH4 flux from these systems; however, there are no published CH4 ebullition estimates for streams or rivers in subarctic or arctic biomes, regions that store vast quantities of vulnerable, old organic carbon in permafrost soils. We quantified CH4 ebullition from headwater streams in a small arctic watershed in Northeastern Siberia. Ebullitive emissions were 0.64 mmol m-2 d-1, which is lower than the global average but approximately 2 times greater than the pan-arctic diffusive CH4 flux estimate reported in a recent synthesis of global freshwater CH4 emissions. The high CO2:CH4 of sediment bubbles (0.52) suggests that methane emissions may currently be constrained by resource competition between methanogens and microbes using more efficient metabolic strategies. Furthermore, the magnitude and frequency of ebullition events were greater as temperatures increased, suggesting that ebullition from streams could become a more prominent component of the regional CH4 flux in a warmer future

    Toward a Generalizable Framework of Disturbance Ecology Through Crowdsourced Science

    Get PDF
    © 2021 Graham, Averill, Bond-Lamberty, Knelman, Krause, Peralta, Shade, Smith, Cheng, Fanin, Freund, Garcia, Gibbons, Van Goethem, Guebila, Kemppinen, Nowicki, Pausas, Reed, Rocca, Sengupta, Sihi, Simonin, Słowiński, Spawn, Sutherland, Tonkin, Wisnoski, Zipper and Contributor Consortium.Disturbances fundamentally alter ecosystem functions, yet predicting their impacts remains a key scientific challenge. While the study of disturbances is ubiquitous across many ecological disciplines, there is no agreed-upon, cross-disciplinary foundation for discussing or quantifying the complexity of disturbances, and no consistent terminology or methodologies exist. This inconsistency presents an increasingly urgent challenge due to accelerating global change and the threat of interacting disturbances that can destabilize ecosystem responses. By harvesting the expertise of an interdisciplinary cohort of contributors spanning 42 institutions across 15 countries, we identified an essential limitation in disturbance ecology: the word ‘disturbance’ is used interchangeably to refer to both the events that cause, and the consequences of, ecological change, despite fundamental distinctions between the two meanings. In response, we developed a generalizable framework of ecosystem disturbances, providing a well-defined lexicon for understanding disturbances across perspectives and scales. The framework results from ideas that resonate across multiple scientific disciplines and provides a baseline standard to compare disturbances across fields. This framework can be supplemented by discipline-specific variables to provide maximum benefit to both inter- and intra-disciplinary research. To support future syntheses and meta-analyses of disturbance research, we also encourage researchers to be explicit in how they define disturbance drivers and impacts, and we recommend minimum reporting standards that are applicable regardless of scale. Finally, we discuss the primary factors we considered when developing a baseline framework and propose four future directions to advance our interdisciplinary understanding of disturbances and their social-ecological impacts: integrating across ecological scales, understanding disturbance interactions, establishing baselines and trajectories, and developing process-based models and ecological forecasting initiatives. Our experience through this process motivates us to encourage the wider scientific community to continue to explore new approaches for leveraging Open Science principles in generating creative and multidisciplinary ideas.This research was supported by the U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER), as part of Subsurface Biogeochemical Research Program’s Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under contract DE-AC06-76RLO 1830

    Natural climate solutions for the United States

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaat1869, doi:10.1126/sciadv.aat1869.Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)—21 conservation, restoration, and improved land management interventions on natural and agricultural lands—to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year−1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year−1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.This study was made possible by funding from the Doris Duke Charitable Foundation. C.A.W. and H.G. acknowledge financial support from NASA’s Carbon Monitoring System program (NNH14ZDA001N-CMS) under award NNX14AR39G. S.D.B. acknowledges support from the DOE’s Office of Biological and Environmental Research Program under the award DE-SC0014416. J.W.F. acknowledges financial support from the Florida Coastal Everglades Long-Term Ecological Research program under National Science Foundation grant no. DEB-1237517

    Global forest management data for 2015 at a 100 m resolution

    Get PDF
    Spatially explicit information on forest management at a global scale is critical for understanding the status of forests, for planning sustainable forest management and restoration, and conservation activities. Here, we produce the first reference data set and a prototype of a globally consistent forest management map with high spatial detail on the most prevalent forest management classes such as intact forests, managed forests with natural regeneration, planted forests, plantation forest (rotation up to 15 years), oil palm plantations, and agroforestry. We developed the reference dataset of 226 K unique locations through a series of expert and crowdsourcing campaigns using Geo-Wiki (https://www.geo-wiki.org/). We then combined the reference samples with time series from PROBA-V satellite imagery to create a global wall-to-wall map of forest management at a 100 m resolution for the year 2015, with forest management class accuracies ranging from 58% to 80%. The reference data set and the map present the status of forest ecosystems and can be used for investigating the value of forests for species, ecosystems and their services

    Carbon emissions from cropland expansion in the United States

    No full text
    After decades of decline, croplands are once again expanding across the United States. A recent spatially explicit analysis mapped nearly three million hectares of US cropland expansion that occurred between 2008 and 2012. Land use change (LUC) of this sort can be a major source of anthropogenic carbon (C) emissions, though the effects of this change have yet to be analyzed. We developed a data-driven model that combines these high-resolution maps of cropland expansion with published maps of biomass and soil organic carbon stocks (SOC) to map and quantify the resulting C emissions. Our model increases emphasis on non-forest—i.e. grassland, shrubland and wetland—above and belowground biomass C stocks and the response of SOC to LUC—emission sources that are frequently neglected in traditional C accounting. These sources represent major emission conduits in the US, where new croplands primarily replace grasslands. We find that expansion between 2008–12 caused, on average, a release of 55.0 MgC ha ^−1 (SD _spatial  = 39.9 MgC ha ^−1 ), which resulted in total emissions of 38.8 TgC yr ^−1 (95% CI = 21.6–55.8 TgC yr ^−1 ). We also find wide geographic variation in both the size and sensitivity of affected C stocks. Grassland conversion was the primary source of emissions, with more than 90% of these emissions originating from SOC stocks. Due to the long accumulation time of SOC, its dominance as a source suggests that emissions may be difficult to mitigate over human-relevant time scales. While methodological limitations regarding the effects of land use legacies and future management remain, our findings emphasize the importance of avoiding LUC emissions and suggest potential means by which natural C stocks can be conserved

    Estimating the Potential for Conservation and Farming in the Amazon and Cerrado under Four Policy Scenarios

    No full text
    Since 2013, clearing rates have rapidly increased in the Amazon and Cerrado biomes. This acceleration has raised questions about the efficacy of current regional public and private conservation policies that seek to promote agricultural production while conserving remnants of natural vegetation. In this study, we assessed conservation and agricultural outcomes of four potential policy scenarios that represent perfect adherence to private sector, zero-deforestation commitments (i.e., the Amazon soy moratorium&mdash;ASM and the Amazon cattle agreements&mdash;CA) and to varying levels of implementation of the Brazilian Forest Code (FC). Under a zero-clearing scenario, we find that the extent of croplands as of 2017 within the two biomes (31 MHa) could double without further clearing if agriculture were to expand on all previously cleared land that is suitable for crops. Moreover, at least 47 MHa of land that is already cleared but unsuitable for crops would remain available for pasture. Under scenarios in which only legal clearing under the FC could occur, 51 MHa of additional natural vegetation could be cleared. This includes as many as 1 MHa of nonforest vegetation that could be cleared in the Amazon biome without triggering the ASM and CA monitoring systems. Two-thirds of the total vegetation vulnerable to legal clearing is located within the Cerrado biome, and 19 MHa of this land is suitable for cropland expansion. Legal clearing of all of these areas could reduce biodiversity persistence by 4% within the two biomes, when compared with the zero-clearing scenario, and release up to 9 PgCO2e, with the majority (75%) coming from the Cerrado biome. However, when we considered the potential outcomes of full implementation of the FC, we found that 22% (11 MHa) of the 51 MHa of vegetation subject to legal clearing could be protected through the environmental quotas market, while an additional 1 MHa should be replanted across the two biomes, predominantly in the Amazon biome (73% of the area subject to replanting). Together, quotas and replanting could prevent the release of 2 PgCO2e that would otherwise be emitted if all legal clearing occurred. Based on our results, we conclude that ongoing legal clearing could create additional space for cropland and cattle production beyond the substantial existing stocks of cleared areas but would significantly impair local carbon and biodiversity stocks

    Cropland abandonment between 1986 and 2018 across the United States: spatiotemporal patterns and current land uses

    No full text
    Knowing where and when croplands have been abandoned or otherwise removed from cultivation is fundamental to evaluating future uses of these areas, e.g. as sites for ecological restoration, recultivation, bioenergy production, or other uses. However, large uncertainties remain about the location and time of cropland abandonment and how this process and the availability of associated lands vary spatially and temporally across the United States. Here, we present a nationwide, 30 m resolution map of croplands abandoned throughout the period of 1986–2018 for the conterminous United States (CONUS). We mapped the location and time of abandonment from annual cropland layers we created in Google Earth Engine from 30 m resolution Landsat imagery using an automated classification method and training data from the U.S. Department of Agriculture Cropland Data Layer. Our abandonment map has overall accuracies of 0.91 and 0.65 for the location and time of abandonment, respectively. From 1986 to 2018, 12.3 (±2.87) million hectares (Mha) of croplands were abandoned across CONUS, with areas of greatest change over the Ogallala Aquifer, the southern Mississippi Alluvial Plain, the Atlantic Coast, North Dakota, northern Montana, and eastern Washington state. The average annual nationwide abandoned area across our study period was 0.51 Mha per year. Annual abandonment peaked between 1997 and 1999 at a rate of 0.63 Mha year ^−1 , followed by a continuous decrease to 0.41 Mha year ^−1 in 2009–2011. Among the abandoned croplands, 53% (6.5 Mha) changed to grassland and pasture, 18.6% (2.28 Mha) to shrubland and forest, 8.4% (1.03 Mha) to wetlands, and 4.6% (0.56 Mha) to non-vegetated lands. Of the areas that we mapped as abandoned, 19.6% (2.41 Mha) were enrolled in the Conservation Reserve Program as of 2020. Our new map highlights the long-term dynamic nature of agricultural land use and its relation to various competitive pressures and land use policies in the United States

    Land use leverage points to reduce GHG emissions in U.S. agricultural supply chains

    No full text
    Recognizing the substantial threats climate change poses to agricultural supply chains, companies around the world are committing to reducing greenhouse gas (GHG) emissions. Recent modeling advances have increased the transparency of meat and ethanol industry supply chains, where conventional production practices and associated environmental impacts have been characterized and linked to downstream points of demand. Yet, to date, information and efforts have neglected both the spatial variability of production impacts and land use changes (LUCs) across highly heterogeneous agricultural landscapes. Developing effective mitigation programs and policies requires understanding these spatially-explicit hotspots for targeting GHG mitigation efforts and the links to downstream supply chain actors. Here we integrate, for the first time, spatial estimates of county-scale production practices and observations of direct LUC into company and industry-specific supply chains of beef, pork, chicken, ethanol, soy oil and wheat flour in the U.S., thereby conceptually changing our understanding of the sources, magnitudes and influencers of agricultural GHG emissions. We find that accounting for LUC can increase estimated feedstock emissions per unit of production by a factor of 2- to 5-times that of traditionally used estimates. Substantial variation across companies, sectors, and production regions reveal key opportunities to improve GHG footprints by reducing land conversion within their supply chains
    corecore