9 research outputs found

    Improving the assessment of transferable skills in chemistry through evaluation of current practice

    Get PDF
    The development and assessment of transferable skills acquired by students, such as communication and teamwork, within undergraduate degrees is being increas-ingly emphasised. Many instructors have designed and implemented assessment tasks with the aim to provide students with opportunities to acquire and demon-strate these skills. We have now applied our previously published tool to evaluate whether assessment tasks allow students to demonstrate achievement of these transferable skills. The tool allows detailed evaluation of the alignment of any as-sessment item against the claimed set of learning outcomes. We present here two examples in which use of the tool provides evidence for the level of achievement of transferable skills and a further example of use of the tool to inform curricu-lum design and pedagogy, with the goal of increasing achievement of communi-cation and teamwork bench marks. Implications for practice in assessment design for learning are presented

    Kaiser Permanente Internet of Things (IoT) Roadmap

    No full text
    The Internet of Things (IoTs) program has been the most successful program for any organization in order to analyze the data and use those data to build a successful company. The healthcare market has consistently grown over time due to population growth, high economic growth, and the availability of technology. This paper is developed about Kaiser Permanente one of the biggest healthcare organization in the US. This organization is not just a hospital; it’s a giant healthcare and insurance provider at the same time. The objective of this research is therefore to create a technology roadmap for the business to prioritize the characteristics of the product. The Kaiser Permanente’s technology roadmap is created by taking into account four variables, namely product characteristics, market drivers, resources, and technology. Also, these variables are mapped together to create a general roadmap for technology. The roadmap is also split into a time frame of short-term and long-term objectives

    Altimetry for the future: Building on 25 years of progress

    No full text
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
    corecore