2,686 research outputs found

    Performance of B. M. W. 185-Horsepower Airplane Engine

    Get PDF
    This report deals with the results of a test made upon a B. M. W. Engine in the altitude chamber of the Bureau of Standards, where controlled conditions of temperature and pressure can be made to simulate those of the desired altitude. A remarkably low value of fuel consumption - 041 per B. H. P. hour - is obtained at 1,200 revolutions per minute at an air density of 0.064 pound per cubic foot and a brake thermal efficiency of 33 per cent and an indicated efficiency of 37 per cent at the above speed and density. In spite of the fact that the carburetor adjustment does not permit the air-fuel ratio of maximum economy to be obtained at air densities lower than 0.064, the economy is superior to most engines tested thus far, even at a density lower than 0.064, the economies superior to most engines tested thus far, even at a density (0.03) corresponding to an altitude of 25,000 feet. The brake mean effective pressure even at full throttle is rather low. Since the weight of much of the engine is governed more by its piston displacement than by the power developed, a decreased mean effective pressure usually necessitates increased weight per horsepower. The altitude performance of the engine is, in general, excellent, and its low fuel consumption is the outstanding feature of merit

    Instrument for Measuring Engine Clearance Volumes

    Get PDF
    With the advent of the V type engine, a new method to measure the clearance volume in cylinders was needed. It was suggested that this measurement could be made by a process which consisted essentially of simultaneously changing both a known and unknown volume of gas by a known amount and then calculating the magnitude of the unknown from the resulting difference in pressure between the two. An instrument based on this design is described

    Performance of Maybach 300-horsepower airplane engine

    Get PDF
    This report contains the results of a test made upon a Maybach Engine in the altitude chamber of the Bureau of Standards, where controlled conditions of temperature and pressure can be made the same as those of the desired altitude. The results of this test lead to the following conclusions: from the standpoint of thermal efficiency the full-load performance of the engine is excellent at densities corresponding to altitudes up to and including 15,000 feet. The brake mean effective pressure is rather low even at wide-open throttle. This tends to give a high weight per horsepower, in as much as the weight of many engine parts is governed by the size rather than the power of the engine. At part load the thermal efficiency of the engine is low. Judged on a basis of performance the engine's chief claim to interest would appear to lie in the carburetor design, which is largely responsible excellent full-load efficiency and for its poor part-load efficiency

    Performance of a Liberty 12 airplane engine

    Get PDF
    In cooperation with the Engineering Division of the Air Service of the United States Army, a Liberty-12 engine has been tested at the Bureau of Standards. The program of tests was planned to yield that information considered most important in determining the value of the engine for aviation. Full power runs were made at the ground, at 25,000 feet, and at several intermediate altitudes. To determine the mechanical efficiency of the engine, friction horsepower was measured at the ground and at 15,000 feet. As a basis for predicting engine performance with a propeller, a series of tests was made in which the dynamometer load and engine throttle were adjusted at each speed to simulate the engine load which would be imposed at that speed by a propeller operating under normal full load at 1,700 r.p.m. Among the quantities calculated from the test measurements are: brake horsepower; break mean effective pressure; fuel consumption; mixture ratio; mechanical, thermal, and volumetric efficiency; and the percentage of the heat in the fuel appearing in the jacket water and in the exhaust. Jacket water temperature, oil temperature, manifold pressure, etc., are recorded to show the conditions under which the test was made

    Comparison of alcogas aviation fuel with export aviation gasoline

    Get PDF
    Mixtures of gasoline and alcohol when used in internal combustion engines designed for gasoline have been found to possess the advantage of alcohol in withstanding high compression without "knock" while retaining advantages of gasoline with regard to starting characteristics. Test of such fuels for maximum power-producing ability and fuel economy at various rates of consumption are thus of practical importance, with especial reference to high-compression engine development. This report discusses the results of tests which compares the performance of alcogas with x gasoline (export grade) as a standard

    Current Challenges in Autonomous Vehicle Development

    Get PDF
    The field of autonomous vehicles is a rapidly growing one, with significant interest from both government and industry sectors. Autonomous vehicles represent the intersection of artificial intelligence (AI) and robotics, combining decision-making with real-time control. Autonomous vehicles are desired for use in search and rescue, urban reconnaissance, mine detonation, supply convoys, and more. The general adage is to use robots for anything dull, dirty, dangerous or dumb. While a great deal of research has been done on autonomous systems, there are only a handful of fielded examples incorporating machine autonomy beyond the level of teleoperation, especially in outdoor/complex environments. In an attempt to assess and understand the current state of the art in autonomous vehicle development, a few areas where unsolved problems remain became clear. This paper outlines those areas and provides suggestions for the focus of science and technology research. The first step in evaluating the current state of autonomous vehicle development was to develop a definition of autonomy. A number of autonomy level classification systems were reviewed. The resulting working definitions and classification schemes used by the authors are summarized in the opening sections of the paper. The remainder of the report discusses current approaches and challenges in decision-making and real-time control for autonomous vehicles. Suggested research focus areas for near-, mid-, and long-term development are also presented

    Electrochemical Behavior of Chlorine on Platinum Microdisk and Screen-Printed Electrodes in a Room Temperature Ionic Liquid

    Get PDF
    As a result of the toxic and corrosive nature of chlorine gas, simple methods for its detection are required for monitoring and control purposes. In this paper, the electrochemical behavior of chlorine on platinum working electrodes in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) is reported, as a basis for simple sensor devices. Cyclic voltammetry (CV) and chronoamperometry (CA) on a Pt microelectrode revealed the two-electron reduction of Cl2 to chloride ions. On the CV reverse sweep, an oxidation peak due to the oxidation of chloride was observed. The reduction process was diffusion controlled at the concentrations studied (≤4.5% in the gas phase), in contrast to a previous report (J. Phys. Chem. C2008, 112, 19477), which examined only 100% chlorine. The diffusion-controlled currents were linear with gas-phase concentration. Fitting of the CA transients to the Shoup and Szabo expression gave a diffusion coefficient for chlorine in the RTIL of ca. 2.6 × 10–10 m2 s–1. Furthermore, determination of the equilibrium concentration of Cl2 in the RTIL phase as a function of gas-phase concentration enabled a value of 35 to be determined for the Henry’s law dimensionless volatility constant. The electrochemical behavior of chlorine on a Pt screen-printed electrode was also investigated, suggesting that these devices may be useful for chlorine detection in conjunction with suitable RTILs
    • …
    corecore