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Capsule summary  1 

Heat waves in Central-Eastern China like the record-breaking July 2017 event were 2 

rare in natural worlds, but have now become approximately one-in-five-year events 3 

due to anthropogenic forcings.  4 

Introduction  5 

During July 2017, an unprecedentedly intense heat wave struck Central-Eastern 6 

China, resulting in drastically-increased human morbidity/mortality, steeply-reduced 7 

agriculture productivity, and serious shortage of electricity and water supply (China 8 

Climate Bulletin of 2017). Many meteorological stations registered 15–25 hot days 9 

(daily maximum temperature over 35°C), and some even had their record-high July 10 

temperatures, such as a new record of 40.9°C amongst historical observations since 11 

1873 in Xu-Jia-Hui station in Shanghai (China Climate Bulletin of 2017). The China 12 

Meteorological Administration issued 10 high-level warnings against hot weather 13 

during 21st–25th July. Such unprecedentedly frequent alarms within only 5 days 14 

attracted intense scrutiny from policy-makers, media, and the public on the 15 

relationship between this heat wave and global warming.  16 

Previous studies usually conducted attribution analyses on seasonal warmth in 17 

Central-Eastern China (e.g. the 2013 record-breaking summer, Sun et al. 2014), 18 

leaving attribution statements for short-term (synoptic) hot extremes sparsely 19 

reported. This study therefore attempts to answer whether and to what extent 20 

anthropogenic warming has increased the likelihood of 5-day heat waves as hot or 21 

hotter than the 21st–25th July 2017 case over Central-Eastern China.  22 
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Data and Methods 23 

Homogenized observations of daily maximum temperatures (Tmax) during 24 

1960-2017 from 760 meteorological stations are used (Li et al. 2015; homogenization 25 

methods see Szentimrey 1999). Daily observations is interpolated onto the 0.56° × 26 

0.83° grid of the model via a ‘natural neighbor’ scheme (Sibson 1981), following the 27 

model’s resolution and geography. 28 

The upgraded HadGEM3-GA6-N216 model is employed (Christidis et al. 2013; 29 

Ciavarella et al. 2018). Model outputs include all-forced simulations conditioned on 30 

the observed 2017 sea surface temperature (SST) and sea ice from the HadISST 31 

dataset (Rayner et al. 2003), and naturalized simulations with anthropogenic signals 32 

removed from observed SSTs and with pre-industrial forcings. Accordingly, 33 

occurrence probabilities and resultant attribution conclusions reported in this study are 34 

also conditioned on the 2017 SST patterns. The ensemble is generated through 35 

physics perturbations of multiple initial conditions with identical external forcings. 36 

More specifically, historical simulations (histCLIM) consisting of fifteen 37 

members over 1961–2013 are compared with interpolated observations, to evaluate 38 

the model’s fidelity in simulating climatological statistics (mean and variability) of 39 

the strongest 5-day heat waves. Two ensembles of 525-member simulations for the 40 

2017 July with (hereafter histALL, as an extension of previous histCLIM runs) and 41 

without (hereafter histNAT) anthropogenic forcings are used to estimate the 42 

probability of the 21st–25th July heat wave in each scenario. Denoting PALL and PNAT 43 

as the occurrence probability of events equivalent to or stronger than the targeted case 44 

in 525-member histALL and histNAT ensembles, the risk ratio (RR) is expressed as 45 

PALL/PNAT. The fraction of attributable risks (FAR) is expressed as 1- PNAT/PALL. 46 
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Reference climatologies over 1961-1990 are formed for both simulations 47 

(ensemble mean of 15-member histCLIM) and observations from the hottest 5-day 48 

running mean Tmax in July. These pentad climatologies are approximately 2-3°C 49 

warmer than July monthly-mean Tmax climatologies in both simulations and 50 

observations, and serve to distinguish especially intense 5-day heat waves from more 51 

typical 5-day cases (Fig. 1c-d). Respective climatologies are then removed from 52 

observations and simulations to create overlapping pentad Tmax anomalies (see Fig. 53 

1c, hereafter PTmax). Based on these PTmax anomalies, both the historical 54 

distribution of the hottest 5-day heat waves and warm anomalies for the 2017 case 55 

could be well reproduced by this model (Fig. S1), indicating the suitability of using 56 

this model and PTmax anomalies for attributing this 5-day heat wave. Freychet et al. 57 

(2018) also reported good performance of this model in simulating characteristics of 58 

5-day heat waves in Central-Eastern China, as it is capable of capturing critical 59 

mechanisms generating heat waves there. In the reminder of this paper, we used the 60 

PTmax anomaly to define the threshold.  61 

Results  62 

During 21st–25th July, almost the entirety of Central-Eastern China had 63 

temperatures over 35°C, equivalent to 2–6°C PTmax anomalies (Fig. 1a).  Anomalies 64 

of these magnitudes produced numerous record- or near-record July PTmax (Fig. 1b). 65 

In terms of domain-averaged values, the PTmax in this pentad not only peaked during 66 

July 2017, but also set a new record amongst all historical July counterparts (any 5-67 

day mean Tmax during July) since 1960 (Fig. 1c-d; note: we consider this pentad 68 

instead of 22nd–26th because of its extensive social and economic repercussions). It is 69 

well-known that heat waves in this area result dynamically from the persistence of 70 



4 

 

anticyclonic circulations which facilitate increased surface solar radiation and 71 

adiabatic heating (Freychet et al. 2017; Chen et al. 2015). Specific to this case, an 72 

unprecedentedly (all Julys since 1960) strong anomalous anticyclonic cell was 73 

centered above Central-Eastern China, dynamically explaining the origin of the 74 

“record-breaking” Tmax (Fig. S2) and its exclusive occurrence in this domain (Fig. 75 

1a).  76 

The PTmax anomaly from the interpolated observation (2.52°C) was used as a 77 

threshold to characterize the July 2017-like heat wave. Events of this magnitude are 78 

fairly rare (PNAT=2.1%) in natural-forcing simulations (Fig. 2a, green). Without 79 

anthropogenic warming, similar heat waves should have been seen one to three times 80 

per century (mean return period: 47.7 years, 95% CI: 30.8–75.0 years, Fig. 2b, green). 81 

By contrast, the distribution of simulated PTmax anomaly is markedly positive-82 

displaced in all-forcing worlds, signifying substantially increased odds (PALL=20.1%) 83 

of events this hot. In the current climate, anthropogenic warming has exposed Central-84 

Eastern China to 2017-like heat waves about twice per decade (mean return period: 85 

4.9 years , 95% CI: 4.3–5.8 years, Fig. 2b, red).  86 

Quantitatively speaking, the risk of an event as hot or hotter increased by at least 87 

10-fold (RR=9.8, 95% CI: 5.9–18.9) due to anthropogenic warming. Translating into 88 

FAR, human influence accounted for at least 90% (95% CI: 83.0%–94.7%) for the 89 

presence of 2017-like heat waves. To avoid selection bias potentially introduced by 90 

using the critical threshold at the very end tail (Stott et al. 2004), we also adopted the 91 

second hottest July record (2.09°C in July 2002) as an alternative threshold. 92 

Simulated anomalies exceeding this threshold are recorded 5 times more frequently 93 

(RR=4.5, 95% CI: 3.4–6.5) in the all-forcing world (PALL=26.8%) than in the natural-94 

forcing world (PNAT=5.9%). These results also indicate anthropogenic forcings 95 
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contributed more to increases in risks of rarer, more extreme heat waves. So, we 96 

reiterate that anthropogenic warming played an overarching role (FAR=77.8%, 95% 97 

CI: 70.4%–84.6%) in elevating the risk of heat waves stronger than this second-98 

hottest threshold (e.g. the July 2017 case).  99 

Conclusion and Discussion 100 

In Central-Eastern China, heat waves hotter than the July 2017 event should 101 

have had a very slim chance to occur in natural-forcing worlds. But now, forced by 102 

anthropogenic warming and conditioned on the 2017 SST pattern, a 5-day heat wave 103 

like this case has become 10 times more likely, as a one-in-five-year or more common 104 

event.   105 

Although influences of anthropogenic warming could be detected and were 106 

largely attributable, attribution conclusions for a single high-impact case may be 107 

subject to some uncertainties. Firstly, the estimated RR and FAR may be 108 

quantitatively sensitive to the selection of baseline periods (here 1961–1990), as 109 

reported by Knutson et al. (2013). Still, sensitivity tests adopting varying baselines for 110 

this case indicate that the qualitative statement “increase in the likelihood of a July 111 

2017-like heat wave could be largely attributable to anthropogenic warming” robustly 112 

holds. Secondly, the estimated RR and FAR only apply to the current climate. As the 113 

planet keeps warming, a higher RR of a July 2017-like case would be expected 114 

(Perkins and Gibson 2015). Future reductions in aerosols due to increasingly stricter 115 

air quality control in this area may also give a greater RR of a July 2017-like case 116 

(Van Oldenborgh et al. 2018; Wang et al. 2017). This study is based only on factual 117 

and counterfactual runs in a single atmosphere-only model, with the intention of 118 

exploiting its large ensembles for calculating the statistics of rare events (Otto 2017). 119 
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Estimated RRs should still be compared with those derived via other methods/models, 120 

such as observation-constrained estimates (van Oldenborgh et al. 2015), alternative 121 

atmosphere-only model-based estimates (e.g. weather@home, Massey et al. 2015) 122 

and fully-coupled model-based estimates (CMIP5, Sun et al. 2014), to further clarify 123 

uncertainties.  124 

Comparing temperatures alone in factual and counterfactual simulations, the 125 

estimated RR only delivers a general attribution message, leaving physical 126 

interpretations about how anthropogenic forcings influenced the likelihood of the heat 127 

wave and its preferential occurrence in Central-Eastern China to be addressed. To this 128 

end, follow-up efforts will be made to disentangle this general attribution effort into 129 

dynamical part (e.g., large-scale circulations) and thermodynamic part (Vautard et al. 130 

2016; Schaller et al. 2016). A critical step toward dynamic attribution is to quantify 131 

the extent to which anthropogenic warming affected the presence, location, 132 

maintenance and amplitude of anticyclonic circulations akin to the 2017 case (Fig. 133 

S2). Such a separation could also facilitate to track down and communicate the source 134 

of attribution uncertainties from both dynamic and thermodynamic perspectives 135 

(Vautard et al. 2016; Wehrli et al. 2018).  136 
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Figure Caption List 218 

Fig. 1. (a) Observed pentad-mean (21st -25th July 2017) Tmax anomalies (°C) relative 219 

to the 1961-1990 climatology for the maximum 5-day mean Tmax. The green contour 220 

indicates the 35°C-isoline of mean Tmax during this pentad. Central-Eastern China is 221 

shown by the dashed rectangle. (b) Spatial distribution of stations that registered 222 

record- and near-record (since 1960) pentad-mean July Tmax during 21st – 25th July 223 

2017. (c) Observed overlapping pentad-mean Tmax anomaly averaged over Central-224 

Eastern China during July 2017. Each value is indexed by the first day of the pentad. 225 

(d) Observed maximum 5-day mean Tmax anomaly averaged over Central-Eastern 226 

China in each July over 1960–2017. The red vertical line labels the 2017 event, and 227 

the dashed line indicates its anomaly. 228 

 229 

Fig. 2. (a) Distribution of domain-averaged hottest 5-day mean Tmax anomalies 230 

during July 2017 (histogram), based on 525-member histALL (red) and histNAT 231 

(green) ensembles, and their GEV-fitted curves shown by respective colors. (b) 232 

Return periods of domain-averaged hottest 5-day mean Tmax anomalies in histALL 233 

(red) and histNAT (green) ensembles. The threshold value of 2.52°C is indicated by 234 

dashed lines in (a) and (b). In (b), vertical and horizontal bars represent the 5%-95% 235 

uncertainty interval of temperature anomalies and return periods, derived via the 236 

bootstrapping method (N=1000). Grey shadings specify the uncertainty interval of 237 

return period of the threshold-exceedance in histNAT and histAll runs. 238 
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Figures 239 

 240 

Fig. 1. (a) Observed pentad-mean (21st -25th July 2017) Tmax anomalies (°C) relative 241 

to the 1961-1990 climatology for the maximum 5-day mean Tmax. The green contour 242 

indicates the 35°C-isoline of mean Tmax during this pentad. Central-Eastern China is 243 

shown by the dashed rectangle. (b) Spatial distribution of stations that registered 244 

record- and near-record (since 1960) pentad-mean July Tmax during 21st – 25th July 245 

2017. (c) Observed overlapping pentad-mean Tmax anomaly averaged over Central-246 

Eastern China during July 2017. Each value is indexed by the first day of the pentad. 247 

(d) Observed maximum 5-day mean Tmax anomaly averaged over Central-Eastern 248 

China in each July over 1960–2017. The red vertical line labels the 2017 event, and 249 

the dashed line indicates its anomaly. 250 
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Fig. 2. (a) Distribution of domain-averaged hottest 5-day mean Tmax anomalies 253 

during July 2017 (histogram), based on 525-member histALL (red) and histNAT 254 

(green) ensembles, and their GEV-fitted curves shown by respective colors. (b) 255 

Return periods of domain-averaged hottest 5-day mean Tmax anomalies in histALL 256 

(red) and histNAT (green) ensembles. The threshold value of 2.52°C is indicated by 257 

dashed lines in (a) and (b). In (b), vertical and horizontal bars represent the 5%-95% 258 

uncertainty interval of temperature anomalies and return periods, derived via the 259 

bootstrapping method (N=1000). Grey shadings specify the uncertainty interval of 260 

return period of the threshold-exceedance in histNAT and histAll runs. 261 


