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Current challenges in autonomous vehicle development

J. Connelly, W.S. Hong, R.B. Mahoney, Jr., and D.A. Sparrow
Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, VA 22311

ABSTRACT

The field of autonomous vehicles is a rapidly growing one, with significant interest from both
government and industry sectors. Autonomous vehicles represent the intersection of artificial
intelligence (AI) and robotics, combining decision-making with real-time control. Autonomous
vehicles are desired for use in search and rescue, urban reconnaissance, mine detonation, supply
convoys, and more. The general adage is to use robots for anything dull, dirty, dangerous or dumb.
. While a great deal of research has been done on autonomous systems, there are only a handful of
fielded examples incorporating machine autonomy beyond the level of teleoperation, especially in
outdoor/complex environments. In an attempt to assess and understand the current state of the art in
autonomous vehicle development, a few areas where unsolved problems remain became clear. This
paper outlines those areas and provides suggestions for the focus of science and technology research.
The first step in evaluating the current state of autonomous vehicle development was to develop a
definition of autonomy. A number of autonomy level classification systems were reviewed. The
resulting working definitions and classification schemes used by the authors are summarized in the
opening sections of the paper. The remainder of the report discusses current approaches and
challenges in decision-making and real-time control for autonomous vehicles. Suggested research
focus areas for near-, mid-, and long-term development are also presented.

Keywords: autonomy, autonomous vehicles, robotics, artificial intelligence
1. INTRODUCTION

1.1 Definition of autonomy

What is autonomy? According to Webster [1], it is “the quality or state of being self-governing”.
However, in the field of autonomous vehicles and military applications, autonomy is usually thought
of as something more synonymous with “independence” or “intelligence”.

The official DoD definition of “autonomous operation”, from the DoD Dictionary of Military
Terms, provides an interesting perspective on the concept and separates it somewhat from just
autonomous vehicles:

“In air defense, the mode of operation assumed by a unit after it has lost all communications

with higher echelons. The unit commander assumes full responsibility for control of weapons
and engagement of hostile targets.” [2]

Unmanned Systems Technology Vill, edited by Grant R. Gerhart, Charles M. Shoemaker, Douglas W. Gage,
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This definition also highlights the fact that autonomy does not apply only to machines, but is already
a working concept within the military chain of command. Therefore, when considering autonomy,
the terms “Authority” and “Agent” instead of “human” and “computer” are suggested. In this way,
the discussions are not limited to the hierarchy as it is currently envisioned.

One interesting characterization of autonomy found was “[autonomy] is whatever we don’t know
how to do yet. Once we know how to do it, we call it an algorithm.”" In fact, this is more widespread
today than generally realized. Some functions taken for granted in cars or planes today make and
execute decisions independently and thus may be considered autonomous subsystems, e.g.
optimization of fuel and battery power consumption ratios in hybrid vehicles, air bags, and anti-lock
brakes. However, because the whole car is not autonomous, there is a tendency to minimize the
successes that have been attained thus far, and characterize them as “automatic” rather than
“autonomous’’.

What is the difference between “automatic” and “autonomous”? One distinction may be to say that
something automatic has only one “choice” between two possible states, e.g. ‘on’ or ‘off’. Another
classification would say that automatic systems take in only one input for making the decision. In
“either case, current air bags and anti-lock brakes would likely fall in the “automatic” instead of
“autonomous” category. Autonomous systems could then be ones that process multiple inputs before
acting, e.g. a braking system that considers both wheel slippage and speedometer measurements and
only deploys if the car is traveling faster than 30mph. Alternately, autonomous systems may be
those that have more than two possible states, and so have to make more than an “on/off” choice.
The relative merits of these ways of drawing the line between “autonomous” and ‘“‘automatic” are
hard to measure—there are continuing debates and the presence of counterexamples in any
classification system or definition proposed to date. If the line between “automatic” from
“autonomous” is drawn based on number of choices or whether the system is following rules instead
of “making its own decisions”, then any current system would be considered “automatic”, not
“autonomous”, because they are all deterministic in their decision making. This observation raises
the question of whether any currently foreseeable system is truly autonomous; the ambiguity of the
term may be why many sectors are choosing to use the term “unmanned” instead. However, in order
to encourage research and development in useful near-term areas, it seems more useful to extend the
“autonomy” umbrella in the other direction instead. Therefore, we propose the following working
definition of an autonomous system:

An autonomous system is one that makes and executes a decision to achieve a goal
without full, direct human control.

Here “system” does not have to mean an entire vehicle; it could also mean a subsystem like the ABS
example. By this definition, automatic is not distinct from autonomous, but is a subset instead. This
inclusive definition dovetails nicely with the ongoing efforts to classify “levels of autonomy”. These
levels would depend on such things as mission complexity or level of required human interaction.

! Patrick Winston, former director of MIT’s Artificial Intelligence Laboratory, as quoted in “Autonomous Land

Vehicles” by Dr. Hugh Durrant-Whyte.
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Automatic systems (single input to single output) would occupy the lower end of any autonomy
scale.

In developing this working definition of autonomy, it became clear that there are two main areas of
development for an autonomous vehicle: decision-making and real-time control. Generally speaking,
the decision-making side corresponds to “autonomous” (or independence) and the real-time control
corresponds to “vehicle” (or execution), although the line between the two can be a bit fuzzy at
times. There is clearly some local decision-making that takes place within the realm of real-time
control, such as in local navigation and obstacle avoidance. Otherwise, robots would run into
obstacles while trying to decide whether to go left or right to get around it. Another point regarding
these two categories is that they cannot stand alone. Developers of autonomous vehicles cannot
work on autonomy and computer processing separately from working on vehicle mechanics—the
integration of these two areas into one physical system presents a significant challenge in and of
itself. Not only does the computer equipment need to be able to physically withstand the operational
environment onboard a moving vehicle, but it also needs to appropriately connect the algorithms to
the.incoming sensor data and decide which sensor information is needed in the first place.

Therefore, it seems prudent to define “autonomy” not as a technology that can be developed in and
of itself, but rather as a capability enabled by supporting technologies. Dr. Durrant-Whyte, head of
the Australian Centre for Field Robotics (ACFR), divides those technologies into five categories:
mobility, localization, navigation, planning, and communication [3]. Mobility includes the real-time
control and mechanics of the vehicle itself. Localization incorporates sensors and software to
identify the vehicle’s position, attitude, velocity, and acceleration. Navigation, also known as local
obstacle avoidance, is a combination of decision-making and real-time control. Planning includes
mission- and task-level decisions, waypoint generation, task allocation, etc. Communication
involves all the links between the vehicle and teammates, operators, and command and control.
These five categories summarize the main contributing technology areas for autonomous vehicles.

1.2 DoD’s interest in autonomy

According to Congressional mandate, “by 2015, one-third of the operational ground combat vehicles
[must be] unmanned.” [4] This mandate highlights the attention focused on unmanned systems and
autonomous vehicles in the DoD. The DARPA Grand Challenge, Littoral Combat Ship, Joint
Unmanned Combat Air System, and Army Future Combat System projects are all examples of DoD
programs promoting and incorporating vehicles with more autonomous capabilities.

A key desired feature of such vehicles for DoD applications would be the ability to prudently hand
over control to a machine with a solid understanding of its capabilities and confidence in its
performance. Achieving higher levels of performance in challenging environments and conducting
increasingly sophisticated operations in the “dirty” and “dangerous” realms, instead of just the “dull”
or “dumb” ones, is obviously a key interest of the DoD for autonomous vehicle development.

Proc. of SPIE Vol. 6230 62300D-3



2. AUTONOMY LEVELS

To evaluate the current state of autonomous unmanned vehicle (AUV) technology development, it 1s
important to refine the concept of autonomy. That is, what “counts” as autonomous? This is not a
binary question, but rather, is best approached through characterizing levels of autonomy. Others
have attempted to define these levels and establish a classification scheme applicable across
agencies and applications. Two primary models—the Autonomous Control Levels (ACL) [5]
established by Air Force Research Laboratory staff and the Autonomy Levels for Unmanned
Systems (ALFUS) model [6] established by the National Institute for Standards and Technology
(NIST) - use a zero-to-ten scale to delineate levels of autonomy. The ACL scale is based on the
OODA loop (Observe, Orient, Decide, Act) introduced by Air Force pilot Col. John Boyd [7] to
describe how pilots make decisions during combat. The ALFUS scale constitutes three axes: mission
complexity, environmental difficulty, and human-robot interaction (HRI), each are subdivided into
quantifiable metrics. The Sheridan model [8], developed in 1978 for the teleoperation of unmanned
underwater vehicles, is another zero-to-ten scale that has long been the standard within the Al
community.

From these various scales, four main categories were identified: piloted vehicle, authority-in-the-
loop, authority-on-the-loop, and authority-out-of-the-loop. These categories are based on work
presented by Chad Hawthorne and Dave Scheidt at the Johns Hopkins University Applied Physics
Lab [9].

The ultimate goal in evaluating these classification systems was to assist the Office of the Secretary
of Defense (OSD) in coordinating oversight efforts regarding autonomy research programs within
the various services. One of these existing models may provide a suitable template for structuring
and evaluating the department’s autonomy research programs. Alternatively, some combination of
the ideas utilized by each model may yield a better fit for this application. Different metrics may be
more useful for oversight and others, for planning within a program. If nothing else, this review lays
the groundwork for defining and understanding the problem of autonomy and has helped in
identification and classification of the primary supporting technologies.

3. DECISION-MAKING

Autonomous decision-making is an incredibly complex subject, especially given the fact that
scientists do not fully understand how the human brain works and makes decisions. For autonomous
vehicles, there appear to be two main categories of approaches to decision-making: reduction and
learning. Shown below is a diagram from a Defense Advance Research Projects Agency/Information
Processing Technology Office presentation given by Ron Brachman, the director of IPTO [10].
Figure 1 reveals just how complex autonomous decision-making processes can be. Indeed, one way
to measure levels of autonomy would be to consider how many layers of the decision-making
process portrayed are employed by the unmanned system.
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Figure 1: Diagram of a Cognitive Agent

3.1 Reduction

As can be seen in the diagram above, decision-making can involve much more than a simple binary
selection. Humans incorporate a priori knowledge, context, and emotions when making decisions. In
the reduction approach to autonomous decision-making, those eclements are largely excluded.
Instead, the problem is reduced to a simple, clearly-defined input-output mapping.

Automotive subsystems provide numerous examples of this approach. Anti-lock brake systems
(ABS) have long been the standard in American cars. Anti-lock brakes use a sensor that detects
changes in wheel spin rate. When that sensor readout passes a certain threshold, the automatic brake
is activated. There is a direct mapping of input to output, a clear rule for which action to take and
only two choices for action: activate or not. ABS incorporate both the autonomous decision-making
mentioned above and real-time control, in the pumping of the brake. From the definition of an
autonomous system proposed above, the “goal” declared by the human driver is to stop; the ABS
then decides how to accomplish that goal - whether the pumping is required in the situation - and
then executes that decision, all more quickly than a human driver could.

A similar threshold sensor with a binary output option found in automobiles is the air bag. When
deceleration is faster than a certain limit, the air bag deploys. Again, the air bag is an autonomous
subsystem—although in this case, even more control is ceded to the computer, because the driver
cannot override the decision to deploy just by lifting his foot up the way he can with his brakes.

An extension of this method is used in the new hybrid cars to optimize the ratio between fuel and
battery power consumption as a function of speed, remaining battery life, etc. In this situation there
are more dimensions than for ABS or airbags: the onboard computer needs to determine the optimal
split between combustion and battery power and to execute the switching back and forth.

Proc. of SPIE Vol. 6230 62300D-5



An example of the reduction approach that has already been applied in robotics is simple obstacle
avoidance. The problem can be reduced to a binary output—"can I go straight or not?” There are
only two output options and potentially only one required sensor. This is a very simplified method
and would probably not detect things like cliffs or chain link fences, depending on the capabilities
and sensitivity of the vehicle’s sensors, but it can be enough to successfully avoid obstacles in
indoor or relatively uniform outdoor environments.

A variation on the reduction approach is the use of multi-robot systems. The concept is to give
simple tasks/capabilities to each robot and connect them via a wireless network. By separating the
overall mission into smaller subtasks, the complexity of the problem has been reduced to one that
can be physically accomplished by current robots. The primary difficulty of fielding multi-robot
systems lies in achieving effective and efficient communication and collaborative decision-making.
Also, 1n some cases the capabilities of the team remain limited by the capabilities of the individual
robots. For example, a mission of identifying and tracking a hostile target will not be possible if
none of the robots are capable of correlating their sensor input to a correct target identification.
However, target tracking in general may be more easily accomplished with multiple vehicles,
because the vehicles could pass information back and forth and adjust their positions relative to each
other, increasing the chances of keeping the target in sight. Similarly, there is a natural desire to pair
different vehicle platforms such as UAVs and UGVs: the UAV can provide overall surveillance and

highlight potential targets of interest, tasking the UGVs to inspect those targets more closely and
report back to the human operator.

If the problem is more complex and a simple mapping is not obvious, researchers can conduct
experiments, collect data, and write algorithms that characterize the domain within a given area (e.g.
the flight envelope for an airplane autopilot). Then computing power can be employed to perform
the bookkeeping and keep track of sensor data, the acrodynamic effects on the vehicle, etc.

A similar “bookkeeping” approach has been suggested for obstacle avoidance. Instead of reducing
the problem down to a binary output, some developers have built up a terrain database. The robotic
vehicle then maps sensor data, such as camera imagery, to the database and “recognizes” the terrain
in front of it. Ideally, this method would help optimize a ground robot’s route - different maximum
safe speeds could be connected with each terrain type, for example. However, building up a truly
comprehensive database would be quite tedious and difficult to accomplish. Not only does this
approach run into the problem of how to respond to unknown terrain, but there is also the issue of
processing time to search through the massive database. By the time the vehicle decided what was in
front of it, it may have already moved beyond that point or exceeded the maximum safe speed and
crashed.

One 1ssue with the reduction approach is that the “rules” given to the computer are only good within
the given operational envelope—it is very difficult to cope with scenarios that fall outside the
bounds of predicted patterns. For example, in 2001 a P-3 was involved in a mid-air collision with a
Chinese aircraft and the pilot managed to land the plane safely [11]. To accomplish this feat, the
pilot had to assess the plane’s changed response with enough speed and accuracy to prevent the
plane from crashing. Current autopilots, such as that on the Global Hawk that recently landed safely
after an engine flameout [12], may be able to recover from types of in-flight failure that have
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standard responses that can be programmed in ahead of time. However, other types of failure may be
too far outside the operational capability of the aircraft, requiring human-level experience, intuition,
and rapid learning in order to successfully recover.

3.2 Learning

The other approach is to attack complex, incompletely characterized problems with superior
computing power. The example of the P-3 pilot recovering from a midair collision is exactly the
type of learning that the Al world is trying to recreate in order to tackle complex, incompletely-
characterized problems. There is a general belief in much of the field that missions beyond a certain
level of complexity will never be possible without some leap in computer learning. For example,
with the terrain database approach discussed above, because of the possibility of sudden, drastic
changes in ground terrain, it seems implausible to develop a database with any significant
operational envelope for an uncertain or unknown outdoor environment. Again, when the
environment is structured or can be structured without disruption, it may be possible (although
granted, quite difficult) to fully characterize the environment and achieve mission success within
those bounds. Robots in manufacturing plants that follow lines or magnets in the floor are an
example of such an application. Alternately, the DARPA Grand Challenge course, even though
largely scripted, is an example of an environment with enough variation and surprise to make it
highly challenging at mission-suitable speeds.

Robots need structure; that is how the variation and surprise can be restricted to levels that current
processing power and algorithms can handle. Therefore, vehicle developers need to find a way to
bring structure to the environment and make it navigable for the unmanned systems. However, many
of the environments in which users would like to send robots are ones that cannot be structured
ahead of time, especially where hostile forces are involved. Since it does not seem feasible to rely on
being able to manage the environment in order to make it easier for the robots, it becomes
increasingly important to develop learning capabilities so that robots can process and function in
changing or unknown environments. DARPA has a number of programs focused on advancing
machine learning and autonomous decision-making, such as LAGR (Learning Applied to Ground
Robots) and REAL (Real World Reasoning). However, these programs are still in the early research
phases and lie outside the scope of this report.

3.3 Summary

Consider the fact that a soldier has had a minimum of 18 years of “learning” prior to enlisting, as
well as additional specialized training for the environment and tasks he is to perform. The idea of
bypassing that training or even just accelerating it in an autonomous vehicle seems highly
unrealistic. Some Al programs anticipate placing unmanned systems in unknown or uncertain
environments and having them perform at the level of a human without having to hard code all the
possible options and outcomes. That is not attempted even for humans —soldiers are trained, use
flight simulators, and also rely on those 18 years of life learning. Most robot learning at this point in
time involves error correction feedback loops and “learning from mistakes”. In order to do this, the
robot must be allowed to make mistakes, something may not be acceptable for meaningful missions
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and that may end up being quite costly, both in time and in resources spent repairing and retraining
the vehicle.

It 1s clear that mission complexity for fully autonomous systems will be severely limited until
significant Al developments are achieved. However, there are still a number of useful steps that
could be taken, and it is in these areas that research and development would be most useful in the
near-term. High payoff pursuits for near-term development include: .
e Further characterizing the environment, i.e. quantifying and expanding the understood
operational envelope for ground vehicles

e Increasing reliability of communication links in order to progress from tethered teleoperation
to wireless '

e Making sensible choices about the role and application of autonomous vehicles and focusing
development on those applications,

¢ Building machines robust enough to withstand less fine-toothed decision-making

4. REAL-TIME CONTROL

Real-time control concerns, in part, the physical aspects of an autonomous vehicle, as well as the
translation from decision to action. Decision-making is still largely regarded as “science” and the
real-time control is primarily considered “engineering”. However, this does not mean that all the
unsolved problems are on the decision-making side and that successﬁJI real-time control is just a
matter of working out some engineering details.

One continually difficult problem is local navigation and obstacle avoidance. Vehicles need to fuse
and process sensor data at fast enough speeds and with enough accuracy to prevent running into
things or getting stuck before higher-level decisions can be made. In a way, obstacle avoidance
captures both real-time control and decision-making, albeit on the small-scale, local level. Current
appropriate sensor packages are few and far between. While the problem may be “solved” in a
performance sense, if the sensor that has been developed does not meet space, weight, power, and
cost constraints, then that sensor is not a solution at all. Because the work done in this field is so
application-specific, there appear to be numerous individual claims of solutions or successful
demonstrations. Yet those successes do not readily translate to other programs or platforms.
Therefore, 1t would be premature to consider such issues “solved” problems.

Much of the difficulty in developing autonomous vehicles capable of complex missions is that
researchers don’t understand how humans make decisions or perform those same tasks. The same is
true for some aspects of real-time control. The human hand is an incredibly complex array of sensors
and 1nterconnected effectors. The sensitivity of force sensors in our fingers is unparalleled. There is
also a certain amount of local processing that takes place—for example, if a person touches a hot
stove, his hand jerks away before the brain has even had time to register that the surface was hot.
Similarly, if someone walks into a door frame, they don’t break a shoulder; they automatically start
reducing the pressure applied at the point of contact. A robot, on the other hand, can snap an
appendage off if it runs into a doorframe or tries to find a light switch and flip it on in a dark room.
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So there is a tradeoff between sensitivity and precision. The current sensor packages available for
autonomous vehicles provide much less information to the decision-making algorithm than humans
use on a regular basis. While building a humanoid robot may not be a primary interest for the
military, this example highlights one of the significant limiting factors in the application of robots.
Therefore, the best focus for development efforts is on tasks at which robots exceed human
performance, rather than ones that just try to mimic humans.

A final challenge facing autonomous vehicle development from the real-time control side is systems
integration. It is essential that all the components be mounted on board a mission-appropriate vehicle
and that they survive the mission. Current sensor packages are generally too expensive or too bulky
for practical applications—especially on ground vehicles. The vehicle also needs to be robust
enough to protect all of the sensor and computing equipment when navigating in rough terrain.
Similarly, a highly advanced sensor may be developed that would allow for significantly increased
autonomy, but if that sensor requires a massive power supply, the vehicle would not be able to move
very far from the base station. The systems integration challenge highlights a key issue in future
autonomous vehicle development—specialization vs. generalization. While general programs and
packages applicable across platforms appear to be the ideal, truly successful robots to date have been
developed for specific missions. The specialized approach limits the systems integration issues,
because the pieces are designed to go together more readily. While a common architecture or sensor
platform may be on the research horizon, for the near-term, the field might be better served to focus
development on more capable, task-specific vehicles.

5. CONCLUSIONS

Research efforts in Al and cognitive computing have been largely theoretical or simulation-based.
There is a disconnect between the field of robotics and the field of cognitive computing, especially
when it comes to real-world implementation. Current artificial intelligence research is, by and large,
not being designed for implementation on board a moving vehicle; yet robots will only be able to
achieve a certain minimal level of complexity without integrating Al concepts and developments. If
any significant advances beyond teleoperation are to be made in autonomous vehicle development,
these two research fields need to come together and use advances from each area in the development
of new vehicles.

Up to this point, autonomous vehicle development has been either highly application specific or too
theoretical to apply on board an actual vehicle. There is a commonly-held hope that a single
architecture or navigation method could be developed that would apply across platforms or
applications, but that does not appear to be an option in the near term. Basic research should
continue to provide new capabilities. However, it seems that there are many factors specific to each
mission and/or environment that require specific development efforts for both the decision-making
approach and the real-time control for each application. Thus far, the more useful a vehicle has been,
the more specialized its development was. This paradigm has led to natural difficulties transferring
successful technologies and approaches between platforms or applications. Although many are
pursuing the ideal of a common system or architecture that would work on all robotic platforms, that
1s too far in the future to be useful at this time.

Proc. of SPIE Vol. 6230 62300D-9



The benefits of commonality across the field may not outweigh the burdens on each particular
platform. In order to field a robot best suited to the given mission, task, or environment, at least for
now that robot needs to have been developed for those conditions. Programs that focus on real-world
implementation will have more success and, while their progress along the autonomy scale may be
in baby steps, they are already out in the desert saving soldiers’ lives. At the same time, DoD
acquires general-purpose equipment precisely because it is more difficult to anticipate operational
needs than commercial ones. Therefore, the primary goal for the Department of Defense seems to be
to increase the mission complexity and environmental variability in which unmanned vehicles are
capable of performing. In this way human soldiers can be removed from dangerous, dull, dirty, and
dumb situations. By increasing the inherent mobility and survivability of vehicles, they will be able
to withstand harsh conditions and hostile environments. They will be able to accomplish more
significant missions but without gaining significant autonomy. Similarly, working to decrease the
cost of the sensors, computing equipment, and power supplies will allow for more rapid
development as the test and rebuild cycle shortens and becomes less expensive. More readily
available, lightweight, small, robust, and inexpensive sensors and other packages would also help
open doors for more multi-vehicle systems and new approaches to missions. Table 1 illustrates
possible focus areas for DoD to pursue in various time frames.

Table 1: Summary of research focus areas for each timeframe (near-, mid-, and far-term)

Near-term Mid-term Far-term
Increase robustness and _ Multi-robot systems: tackle Al: Incorporate context and
inherent mobility of UGVs more complex missions with intuition

multiple single-function robots

Impose structure on the Al: real-time outdoor obstacle | Al transfer learning
operating environment avoidance
Decrease cost and size of Integrate Al systems on board | Multi-robot systems: common
sensors, computing robotic vehicle platforms architecture and
equipment, and power : communication across all
supplies. platforms on a battlefield

Basic Al research is still required, especially in the area of transfer learning—generalizing from a
previous example to a novel situation. Until this trait of humans is more fully understood and
accomplished in computers - or its effects mimicked - there will continue to be long training times
and high costs. In the slightly closer-term, there are a few areas where focused Al research would
yield enormous payoffs once the barrier was broken. These include work on integrating Al systems
on board robotic platforms—it is time to move out of the theoretical, simulation world and focus on
what happens in real world environments. Researchers also need to find a way to model and
incorporate context and intuition into machine systems—or at least understand their role in human
decision-making processes well enough to assess the impact of their absence in autonomous
vehicles.

Outdoor obstacle avoidance remains a key issue for ground vehicles and is probably the area that
already incorporates significant Al but also runs into the most problems due to the incredible
variability of the terrain. Obstacle avoidance is much more straightforward for a UAV: not only are
there far fewer obstacles above tree level, there is also less variation in the environment. On the
ground, significant variability in terrain makes it difficult to effectively characterize the entire
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environment. There is also a much higher degree of potential uncertainty. Indoor environments and
highly structured outdoor environments such as those in agricultural applications are clear
exceptions to this problem, specifically because structure has been imposed on the environment.
Final issues involve communication methods and the fact that line of sight is much more easily
obstructed on the ground than in the air. It is even more difficult underwater without a significant

power source. Thus ground vehicles are an important area on which to focus development in the
near future.

10.

11.

12.

REFERENCES

"Autonomy." Merriam-Webster's Collegiate Dictionary, 9th ed, 1986

United States. Department of Defense. Defense Technical Information Center. DoD Dictionary of
Military Terms. Jul. 2005 <http://www.dtic.mil/doctrine/jel/doddict/data/a/00599 . html>

Durrant-Whyte, Hugh. “Autonomous Land Vehicles”, Proc. IMechE. Vol. 219 Part I: J. Systems and
Control Engineering, IMechE 2005

Spence, Floyd D., National Defense Authorization Act for Fiscal Year 2001 (P.L. 106-398 Sec. 220)

Clough, Bruce T. “Metrics, Schmetrics! How The Heck Do You Determine a UAV’s Autonomy
Anyway?”, 2002. Jun. 2005 <http://www.isd.mel.nist.gov/research_areas/
research_engineering/Performance_Metrics/PerMIS_2002_Proceedings/Clough.pdf >

United States National Institute of Standards and Technology, “ALFUS Framework”, 2005. Jun. 2005
<http://www.isd.mel.nist.gov/projects/autonomy _levels/ >

Boyd, John R. “Patterns of Conflict”, Dec. 1986, 10 JAN 2006 <http://www.d-n-i.net/ boyd/pdf/poc.pdf>

Sheridan, Thomas B. and Verplank, William L., “Human and Computer Control of Undersea
Teleoperations”, 1978

Hawthorne, Chad and Scheidt, Dave, “Moving Emergent Behavior Algorithms from Simulation to

Hardware: Command and Control of Autonomous UxV’s”™, ] 0" International Command and Control
Research and Technology Symposium, 2005

U.S. Department of Defense, Defense Advanced Research Projects Agency,
<http.//'www.darpa.mil/ipto/briefings/IPTO-Overview.pdf>

Venik’s Aviation, “Midair Collision Over China”, 2001, 10 JAN 2006,
<http://www.aeronautics.ru/news/news001/news03 I.htm>

Harvey, David S. “Global Hawk: Flameout Led To Automatic Afghan Alternate”, SEP 2005, 10 JAN
2006 <http://uvscanada.org/blog/?p=46>

Proc. of SPIE Val. 6230 62300D-11



	Sacred Heart University
	DigitalCommons@SHU
	2006

	Current Challenges in Autonomous Vehicle Development
	Julianna Connelly Stockton
	W. S. Hong
	R. B. Mahoney
	D. A. Sparrow
	Recommended Citation


	tmp.1353094585.pdf.UdjWs

