368 research outputs found

    Specific Investigation of Sample Handling Effects on Protease Activities and Absolute Serum Concentrations of Various Putative Peptidome Cancer Biomarkers

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Introduction In the search for novel cancer biomarkers, various proteolytically derived peptides have been proposed to exhibit cancer or cancer-type specificity. As these peptides are presumably also generated after sample collection by tumor-specific proteases, extensive investigatio

    Расчет параметров гидротранспорта высококонцентрированных гидросмесей в условиях предприятий Кривбасса

    Get PDF
    Для технології складування на підприємствах Кривбасу відходів збагачення, згущених до концентрації пасти, запропоновано методики розрахунків параметрів та режимів роботи/ гідротранспортних установок з урахуванням гідравлічних та реологічних характеристик.The methods of calculation of parameters and regimes of hydrotransport plants operation for technology of stocking of cleaning rejects condensed till paste concentration at Krivbas enterprises taking into account hydraulic and rheological characteristics are offered

    Phase I and pharmacological study of the farnesyltransferase inhibitor tipifarnib (Zarnestra®, R115777) in combination with gemcitabine and cisplatin in patients with advanced solid tumours

    Get PDF
    This phase I trial was designed to determine the safety and maximum tolerated dose (MTD) of tipifarnib in combination with gemcitabine and cisplatin in patients with advanced solid tumours. Furthermore, the pharmacokinetics of each of these agents was evaluated. Patients were treated with tipifarnib b.i.d. on days 1–7 of each 21-day cycle. In addition, gemcitabine was given as a 30-min i.v. infusion on days 1 and 8 and cisplatin as a 3-h i.v. infusion on day 1. An interpatient dose-escalation scheme was used. Pharmacokinetics was determined in plasma and white blood cells. In total, 31 patients were included at five dose levels. Dose-limiting toxicities (DLTs) consisted of thrombocytopenia grade 4, neutropenia grade 4, febrile neutropenia grade 4, electrolyte imbalance grade 3, fatigue grade 3 and decreased hearing grade 2. The MTD was tipifarnib 200 mg b.i.d., gemcitabine 1000 mg m−2 and cisplatin 75 mg m−2. Eight patients had a confirmed partial response and 12 patients stable disease. No clinically relevant pharmacokinetic interactions were observed. Tipifarnib can be administered safely at 200 mg b.i.d. in combination with gemcitabine 1000 mg m−2 and cisplatin 75 mg m−2. This combination showed evidence of antitumour activity and warrants further evaluation in a phase II setting

    Cerebrospinal Fluid Concentration of the RET Inhibitor Pralsetinib: A Case Report

    Get PDF
    INTRODUCTION: Pralsetinib is used to treat metastatic RET fusion-positive non-small cell lung cancer. Preclinical studies of pralsetinib have shown blood-brain barrier (BBB) penetration and intracranial activity. The intracranial efficacy of pralsetinib in patients with brain metastasis is considered to be greater compared to older multikinase tyrosine kinase inhibitors. However, CSF concentrations of pralsetinib in patients are not well described in the literature. CASE PRESENTATION: We report a case of a patient with RET fusion-positive NSCLC treated with pralsetinib. Despite extracranial clinical and radiological remission, the patient developed progressive brain metastasis during treatment with pralsetinib. We measured the pralsetinib concentration in plasma and in CSF to determine the CSF-to-unbound plasma ratio. The measured pralsetinib concentrations in plasma and CSF were 1,951 ng/mL (∼57 unbound) and 14 ng/mL, respectively, reflecting a CSF-to-unbound plasma concentration ratio of 0.25. Our findings were compared with data from the literature. CONCLUSION: We showed that pralsetinib penetrates the CSF well and is expected to be an effective treatment for brain metastasis of RET fusion-positive NSCLC. Lack of intracranial efficacy is more likely to be caused by intrinsic or acquired tumor resistance instead of suboptimal exposure of pralsetinib in the brain

    Bioanalytical assay for the quantification of the tyrosine kinase inhibitor EAI045 and its major metabolite PIA in mouse plasma and tissue homogenates using liquid chromatography–tandem mass spectrometry

    Get PDF
    EAI045 is a tyrosine kinase inhibitor (TKI) that targets the mutant epidermal growth factor receptor (EGFR). It was developed to control resistance to available EGFR TKIs. In this study, a major metabolite of EAI045, (5-fluoro-2-hydroxyphenyl)(1-oxo-1,3-dihydro-2H-isoindol-2-yl)acetic acid (PIA), was discovered as a hydrolysis product of the parent drug. A validated assay for both analytes in mouse plasma and tissue homogenates from brain, kidney, liver, lung, spleen, and small intestine with content was set up using LC–MS/MS. Samples were prepared by protein precipitation with acetonitrile and with PLX4720 as internal standard. Separation was performed on a bridged ethylene hybrid C18 column by gradient elution with 0.1% v/v formic acid and methanol. Using positive electrospray, detection was performed in selected reaction monitoring mode. A linear calibration range of 2–2,000 ng/ml was used and validated for both analytes. Precision values ranged between 2.0 and 7.5% for EAI045 and between 2.2 and 12.1% for the metabolite, and accuracy values were between 91.1 and 107.6% for EAI045 and between 87.6 and 100.6% for the metabolite. Both analytes were sufficiently stable under the relevant analytical conditions. Finally, the assay was applied to analyze mouse plasma and tissue levels in a pharmacokinetic study in FVB/NRj wild-type female mice treated with oral EAI045

    Місце Редакційних комісій у підготовці проекту Селянської реформи 19 лютого 1861 р.

    Get PDF
    В статті проаналізовано структуру Редакційних комісій та процес розробки ними правової бази для проведення Селянської реформи 1861 р.В статье рассматривается структура Редакционных комиссий и процесс разработки ими правовой базы для проведения Крестьянской реформы 1861 г.In article to the analyze structure Redactions committee and legal regulations proceedings cultivate to be realization peasant reform 1861 year

    Development and validation of an HPLC-MS/MS method to quantify the KRAS inhibitor adagrasib in mouse plasma and tissue-related matrices

    Get PDF
    We developed and validated an assay utilizing a liquid chromatography-tandem mass spectrometry technique to quantify the KRAS inhibitor adagrasib in mouse plasma and seven tissue-related matrices. The straightforward protein precipitation technique was selected to extract adagrasib and the internal standard salinomycin from the matrices. Gradient elution of acetonitrile and water modified with 0.5% (v/v) ammonium hydroxide and 0.02% (v/v) acetic acid on a C 18 column at a flow rate of 0.6 ml/min was applied to separate the analytes. Both adagrasib and salinomycin were detected with a triple quadrupole mass spectrometer with positive electrospray ionization in a selected reaction monitoring mode. A linear calibration range of 2-2,000 ng/ml of adagrasib was demonstrated during the validation. In addition, the reported precision values (intra- and inter-day) were between 3.5 and 14.9%, while the accuracy values were 85.5-111.0% for all tested levels in all investigated matrices. Adagrasib in mouse plasma was reported to have good stability at room temperature, while adagrasib in tissue-related matrices was stable on ice for up to 4 h (matrix dependent). Finally, this method was successfully applied to determine the pharmacokinetic profile and tissue distribution of adagrasib in wild-type mice

    Validated LC-MS/MS method for simultaneous quantification of KRASG12C inhibitor sotorasib and its major circulating metabolite (M24) in mouse matrices and its application in a mouse pharmacokinetic study.

    Get PDF
    We have successfully developed and validated a bioanalytical assay using liquid chromatography tandem mass spectrometry to simultaneously quantify the first approved KRAS G12C inhibitor sotorasib and its major circulating metabolite (M24) in various mouse matrices. M24 was synthesized in-house via low-pH hydrolysis. We utilized a fast and efficient protein precipitation method in a 96-well plate format to extract both analytes from biological matrices. Erlotinib was selected as the internal standard in this assay. Gradient elution using methanol and 0.1 % formic acid in water (v/v) was applied on an Acquity UPLC BEH C18 column to separate all analytes. Sotorasib, M24, and erlotinib were detected with a triple quadrupole mass spectrometer in positive electrospray ionization in multiple reaction monitoring mode. During the validation and sample quantification, a linear calibration range was observed for both sotorasib and M24 in a range of 4 - 4000 nM and 1 - 1000 nM, respectively. The %bias and %CV (both intra- and inter-day) for all tested levels in all investigated matrices were lower than 15 % as required by the guidelines. Sotorasib had a rather short room temperature stability in mouse plasma for up to 8 h compared to M24 which was stable up to 16 h at room temperature. This method has been successfully applied to measure sotorasib and M24 in several mouse matrices from three different mouse strains. We can conclude that the plasma exposure of sotorasib in mice is limited via human CYP3A4- and mouse Cyp3a-mediated metabolism of sotorasib into M24

    Development and validation of an LC-MS/MS method for the quantification of KRASG12C inhibitor opnurasib in several mouse matrices and its application in a pharmacokinetic mouse study

    Get PDF
    Opnurasib (JDQ-443) is a highly potent and promising KRASG12C inhibitor that is currently under clinical investigation. Results of the ongoing clinical research demonstrated the acceptable safety profile and clinical activity of this drug candidate as a single agent for patients with NSCLC harboring KRASG12C mutations. In this early stage of development, a deeper insight into pharmacokinetic properties in both preclinical and clinical investigations of this drug is very important. Thus, a reliable quantification method is required. To date, no quantitative bioanalytical assay of opnurasib was publicly available. In this study we present a validated assay to quantify opnurasib in mouse plasma and eight mouse tissue-related matrices utilizing liquid chromatography-tandem mass spectrometry. Erlotinib was used as internal standard and acetonitrile was utilized to treat 10 µl of the sample with protein precipitation in a 96-well plate format. Separation and detection were achieved using a BEH C18 column under basic chromatographic conditions and a triple quadrupole mass spectrometer, respectively. We have fully validated this assay for mouse plasma and partially for eight mouse tissue-related matrices over the range of 2–2000 ng/ml. The accuracy and precision of the assay fulfilled international guidelines (EMA & U.S. FDA) over the validated range. The method was proven selective and sensitive to quantify opnurasib down to 2 ng/ml in all investigated matrices. The recoveries of both analyte and internal standard in mouse plasma were ∼100 % with no significant matrix effect in any of the matrices. Opnurasib in mouse plasma was stable up to 12 h at room temperature, and up to 8 h at room temperature in tissue homogenates (except for kidney up to 4 h). This presented method has been successfully applied to quantify opnurasib in preclinical samples from a mouse study and demonstrated its usability to support preclinical pharmacokinetic studies

    A simple method for the quantification of diclofenac potassium in oral suspension by high-performance liquid chromatography with UV-detection

    Get PDF
    A rapid, simple and low cost method was developed to determine diclofenac potassium (DP) in oral suspension, using a reverse-phase column (C8, 150 mm x 4.6 mm, 5 µm), mobile phase containing methanol/buffer phosphate (70:30 v/v, pH 2.5), at a flow rate of 1.0 mL/min, isocratic method, and ultraviolet detection at 275 nm. A linear response (r = 1.0000) was observed in the range of 10.0-50.0 µg/mL. Validation parameters such as linearity, specificity, precision, accuracy and robustness were evaluated. The method presented precision (repeatability: relative standard deviation = 1.21% and intermediate precision: between-analyst = 0.85%). The specificity of the assay was evaluated by exposure of diclofenac potassium under conditions of stress such as hydrolysis, photolysis, oxidation and high temperature. The method presented accuracy values between 98.28% and 101.95%. The results demonstrate the validity of the proposed method that allows determination of diclofenac potassium in oral suspension and may be used as an alternative method for routine analysis of this product in quality control
    corecore