14 research outputs found
Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations
Background
Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations.
Methods
Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required.
Results
Only two changes were made to clinical diagnostic criteria reported in 2013: “multiple cortical tubers and/or radial migration lines” replaced the more general term “cortical dysplasias,” and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals.
Conclusions
Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families
Add-on cannabidiol treatment for drug-resistant seizures in tuberous sclerosis complex
Importance Efficacy of cannabidiol has been demonstrated in seizures associated with Lennox-Gastaut and Dravet syndromes but appears not yet to have been established in conditions with primarily focal seizures, such as tuberous sclerosis complex (TSC).Objective To evaluate efficacy and safety of 25-mg/kg/day and 50-mg/kg/day cannabidiol dosages vs placebo against seizures associated with TSC.Design, Setting, and Participants This double-blind, placebo-controlled randomized clinical trial (GWPCARE6) enrolled patients between April 6, 2016, and October 4, 2018; follow-up was completed on February 15, 2019. The trial was conducted at 46 sites in Australia, Poland, Spain, the Netherlands, United Kingdom, and United States. Eligible patients (aged 1-65 years) were those with a clinical diagnosis of TSC and medication-resistant epilepsy who had had at least 8 TSC-associated seizures during the 4-week baseline period, with at least 1 seizure occurring in at least 3 of the 4 weeks, and were currently taking at least 1 antiepileptic medication.Interventions Patients received oral cannabidiol at 25 mg/kg/day (CBD25) or 50 mg/kg/day (CBD50) or a matched placebo for 16 weeks.Main Outcomes and Measures The prespecified primary outcome was the change from baseline in number of TSC-associated seizures for cannabidiol vs placebo during the treatment period.Results Of 255 patients screened for eligibility, 31 were excluded and 224 were randomized. Of the 224 included patients (median [range] age, 11.4 [1.1-56.8] years; 93 female patients [41.5%]), 75 were randomized to CBD25, 73 to CBD50, and 76 to placebo, with 201 completing treatment. The percentage reduction from baseline in the type of seizures considered the primary end point was 48.6% (95% CI, 40.4%-55.8%) for the CBD25 group, 47.5% (95% CI, 39.0%-54.8%) for the CBD50 group, and 26.5% (95% CI, 14.9%-36.5%) for the placebo group; the percentage reduction from placebo was 30.1% (95% CI, 13.9%-43.3%; P < .001) for the CBD25 group and 28.5% (95% CI, 11.9%-42.0%; nominal P = .002) for the CBD50 group. The most common adverse events were diarrhea (placebo group, 19 [25%]; CBD25 group, 23 [31%]; CBD50 group, 41 [56%]) and somnolence (placebo group, 7 [9%]; CBD25 group, 10 [13%]; CBD50 group, 19 [26%]), which occurred more frequently with cannabidiol than placebo. Eight patients in CBD25 group, 10 in CBD50 group, and 2 in the placebo group discontinued treatment because of adverse events. Twenty-eight patients taking cannabidiol (18.9%) had elevated liver transaminase levels vs none taking placebo.Conclusions and Relevance Cannabidiol significantly reduced TSC-associated seizures compared with placebo. The 25-mg/kg/day dosage had a better safety profile than the 50-mg/kg/day dosage
Pharmacokinetics and Tolerability of Multiple Doses of Pharmaceutical-Grade Synthetic Cannabidiol in Pediatric Patients with Treatment-Resistant Epilepsy.
BACKGROUND: Prior studies have evaluated the use of various constituents of cannabis for their anti-seizure effects. Specifically, cannabidiol, a non-psychoactive component of cannabis, has been investigated for treatment-resistant epilepsy, but more information is needed particularly on its use in a pediatric population. OBJECTIVE: The objective of this study was to evaluate the pharmacokinetics and safety of a synthetic pharmaceutical-grade cannabidiol oral solution in pediatric patients with treatment-resistant epilepsy. METHODS: In this open-label study, pediatric patients (aged 1 to ≤ 17 years) with treatment-resistant epilepsy received cannabidiol oral solution administered as add-on to their current antiepileptic drug regimen. Patients received a single dose (5, 10, or 20 mg/kg) on day 1 and twice-daily dosing on days 4 through 10 (10-mg/kg [cohort 1], 20-mg/kg [cohort 2], or 40-mg/kg [cohort 3] total daily dose). Serial blood samples were collected on day 1 before dosing and up to 72 h post-dose, and on day 10 before dosing and up to 24 h post-dose. Blood samples to assess trough concentrations of cannabidiol were collected on day 6 (for patients aged 12 to ≤ 17 years), day 8 (for patients aged 2 to ≤ 17 years), and day 9 (for patients aged 6 to ≤ 17 years). RESULTS: Overall, 61 patients across three cohorts received one of three doses of cannabidiol oral solution (mean age, 7.6 years). The age composition was similar in the three cohorts. There was a trend for increased cannabidiol exposure with increased cannabidiol oral solution dosing, but overall exposure varied. Approximately 2-6 days of twice-daily dosing provided steady-state concentrations of cannabidiol. A bi-directional drug interaction occurred with cannabidiol and clobazam. Concomitant administration of clobazam with 40 mg/kg/day of cannabidiol oral solution resulted in a 2.5-fold increase in mean cannabidiol exposure. Mean plasma clobazam concentrations were 1.7- and 2.2-fold greater in patients receiving clobazam concomitantly with 40 mg/kg/day of cannabidiol oral solution compared with 10 mg/kg/day and 20 mg/kg/day. Mean plasma norclobazam values were 1.3- and 1.9-fold higher for patients taking clobazam plus 40 mg/kg/day of cannabidiol oral solution compared with the 10-mg/kg/day and 20-mg/kg/day groups. All doses were generally well tolerated, and common adverse events that occurred at > 10% were somnolence (21.3%), anemia (18.0%), and diarrhea (16.4%). CONCLUSIONS: Inter-individual variability in systemic cannabidiol exposure after pediatric patient treatment with cannabidiol oral solution was observed but decreased with multiple doses. Short-term administration was generally safe and well tolerated. TRIAL REGISTRATION: ClinicalTrials.gov (NCT02324673)
Functional Assessment of TSC2 Variants Identified in Individuals with Tuberous Sclerosis Complex
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in the TSC1 or TSC2 genes. The TSC1 and TSC2 gene products, TSC1 and TSC2, form a complex that inhibits the mammalian target of rapamycin (mTOR) complex 1 (TORC1). Here, we investigate the effects of 78 TSC2 variants identified in individuals suspected of TSC, on the function of the TSC1–TSC2 complex. According to our functional assessment, 40 variants disrupted the TSC1–TSC2-dependent inhibition of TORC1. We classified 34 of these as pathogenic, three as probably pathogenic and three as possibly pathogenic. In one case, a likely effect on splicing as well as an effect on function was noted. In 15 cases, our functional assessment did not agree with the predictions of the SIFT amino acid substitution analysis software. Our data support the notion that different, nonterminating TSC2 mutations can have distinct effects on TSC1–TSC2 function, and therefore, on TSC pathology
Functional assessment of TSC1 missense variants identified in individuals with tuberous sclerosis complex
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in the TSC1 or TSC2 genes. The TSC1 and TSC2 gene products, TSC1 and TSC2, form a complex that inhibits the mammalian target of rapamycin (mTOR) complex 1 (TORC1). Previously, we demonstrated that pathogenic amino acid substitutions in the N-terminal domain of TSC1 (amino acids 50224) are destabilizing. Here we investigate an additional 21 unclassified TSC1 variants. Our functional assessment identified four substitutions (p.L61R, p.G132D, p.F158S, and p.R204P) between amino acids 50 and 224 that reduced TSC1 stability and prevented the TSC1-TSC2-dependent inhibition of TORC1. In four cases (20%), our functional assessment did not agree with the predictions of the SIFT amino acid substitution analysis software. Our new data confirm our previous finding that the N-terminal region of TSC1 is essential for TSC1 function. Hum Mutat 33:476479, 2012. (C) 2011 Wiley Periodicals, In
Biallelic mutations in the ferredoxin reductase gene cause novel mitochondriopathy with optic atrophy.
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, including mitochondrial respiration, DNA repair, and iron homeostasis. A steadily increasing number of disorders are being associated with disrupted biogenesis of Fe-S clusters. Here, we conducted whole-exome sequencing of patients with optic atrophy and other neurological signs of mitochondriopathy and identified 17 individuals from 13 unrelated families with recessive mutations in FDXR, encoding the mitochondrial membrane-associated flavoprotein ferrodoxin reductase required for electron transport from NADPH to cytochrome P450. In vitro enzymatic assays in patient fibroblast cells showed deficient ferredoxin NADP reductase activity and mitochondrial dysfunction evidenced by low oxygen consumption rates (OCRs), complex activities, ATP production and increased reactive oxygen species (ROS). Such defects were rescued by overexpression of wild-type FDXR. Moreover, we found that mice carrying a spontaneous mutation allelic to the most common mutation found in patients displayed progressive gait abnormalities and vision loss, in addition to biochemical defects consistent with the major clinical features of the disease. Taken together, these data provide the first demonstration that germline, hypomorphic mutations in FDXR cause a novel mitochondriopathy and optic atrophy in humans. Hum Mol Genet 2017 Dec 15; 26(24):4937-4950