44 research outputs found
ErbB2, EphrinB1, Src Kinase and PTPN13 Signaling Complex Regulates MAP Kinase Signaling in Human Cancers
In non-cancerous cells, phosphorylated proteins exist transiently, becoming de-phosphorylated by specific phosphatases that terminate propagation of signaling pathways. In cancers, compromised phosphatase activity and/or expression occur and contribute to tumor phenotype. The non-receptor phosphatase, PTPN13, has recently been dubbed a putative tumor suppressor. It decreased expression in breast cancer correlates with decreased overall survival. Here we show that PTPN13 regulates a new signaling complex in breast cancer consisting of ErbB2, Src, and EphrinB1. To our knowledge, this signaling complex has not been previously described. Co-immunoprecipitation and localization studies demonstrate that EphrinB1, a PTPN13 substrate, interacts with ErbB2. In addition, the oncogenic V660E ErbB2 mutation enhances this interaction, while Src kinase mediates EphrinB1 phosphorylation and subsequent MAP Kinase signaling. Decreased PTPN13 function further enhances signaling. The association of oncogene kinases (ErbB2, Src), a signaling transmembrane ligand (EphrinB1) and a phosphatase tumor suppressor (PTPN13) suggest that EphrinB1 may be a relevant therapeutic target in breast cancers harboring ErbB2-activating mutations and decreased PTPN13 expression
The FERM and PDZ Domain-Containing Protein Tyrosine Phosphatases, PTPN4 and PTPN3, Are Both Dispensable for T Cell Receptor Signal Transduction
PTPN3 and PTPN4 are two closely-related non-receptor protein tyrosine phosphatases (PTP) that, in addition to a PTP domain, contain FERM (Band 4.1, Ezrin, Radixin, and Moesin) and PDZ (PSD-95, Dlg, ZO-1) domains. Both PTP have been implicated as negative-regulators of early signal transduction through the T cell antigen receptor (TCR), acting to dephosphorylate the TCRζ chain, a component of the TCR complex. Previously, we reported upon the production and characterization of PTPN3-deficient mice which show normal TCR signal transduction and T cell function. To address if the lack of a T cell phenotype in PTPN3-deficient mice can be explained by functional redundancy of PTPN3 with PTPN4, we generated PTPN4-deficient and PTPN4/PTPN3 double-deficient mice. As in PTPN3 mutants, T cell development and homeostasis and TCR-induced cytokine synthesis and proliferation were found to be normal in PTPN4-deficient and PTPN4/PTPN3 double-deficient mice. PTPN13 is another FERM and PDZ domain-containing non-receptor PTP that is distantly-related to PTPN3 and PTPN4 and which has been shown to function as a negative-regulator of T helper-1 (Th1) and Th2 differentiation. Therefore, to determine if PTPN13 might compensate for the loss of PTPN3 and PTPN4 in T cells, we generated mice that lack functional forms of all three PTP. T cells from triple-mutant mice developed normally and showed normal cytokine secretion and proliferative responses to TCR stimulation. Furthermore, T cell differentiation along the Th1, Th2 and Th17 lineages was largely unaffected in triple-mutants. We conclude that PTPN3 and PTPN4 are dispensable for TCR signal transduction
Beta-HPV 5 and 8 E6 Promote p300 Degradation by Blocking AKT/p300 Association
The E6 oncoprotein from high-risk genus alpha human papillomaviruses (α-HPVs), such as HPV 16, has been well characterized with respect to the host-cell proteins it interacts with and corresponding signaling pathways that are disrupted due to these interactions. Less is known regarding the interacting partners of E6 from the genus beta papillomaviruses (β-HPVs); however, it is generally thought that β-HPV E6 proteins do not interact with many of the proteins known to bind to α-HPV E6. Here we identify p300 as a protein that interacts directly with E6 from both α- and β-HPV types. Importantly, this association appears much stronger with β-HPV types 5 and 8-E6 than with α-HPV type 16-E6 or β-HPV type 38-E6. We demonstrate that the enhanced association between 5/8-E6 and p300 leads to p300 degradation in a proteasomal-dependent but E6AP-independent manner. Rather, 5/8-E6 inhibit the association of AKT with p300, an event necessary to ensure p300 stability within the cell. Finally, we demonstrate that the decreased p300 protein levels concomitantly affect downstream signaling events, such as the expression of differentiation markers K1, K10 and Involucrin. Together, these results demonstrate a unique way in which β-HPV E6 proteins are able to affect host-cell signaling in a manner distinct from that of the α-HPVs
Models of Traumatic Cerebellar Injury
Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Studies of human TBI demonstrate that the cerebellum is sometimes affected even when the initial mechanical insult is directed to the cerebral cortex. Some of the components of TBI, including ataxia, postural instability, tremor, impairments in balance and fine motor skills, and even cognitive deficits, may be attributed in part to cerebellar damage. Animal models of TBI have begun to explore the vulnerability of the cerebellum. In this paper, we review the clinical presentation, pathogenesis, and putative mechanisms underlying cerebellar damage with an emphasis on experimental models that have been used to further elucidate this poorly understood but important aspect of TBI. Animal models of indirect (supratentorial) trauma to the cerebellum, including fluid percussion, controlled cortical impact, weight drop impact acceleration, and rotational acceleration injuries, are considered. In addition, we describe models that produce direct trauma to the cerebellum as well as those that reproduce specific components of TBI including axotomy, stab injury, in vitro stretch injury, and excitotoxicity. Overall, these models reveal robust characteristics of cerebellar damage including regionally specific Purkinje cell injury or loss, activation of glia in a distinct spatial pattern, and traumatic axonal injury. Further research is needed to better understand the mechanisms underlying the pathogenesis of cerebellar trauma, and the experimental models discussed here offer an important first step toward achieving that objective
Protein tyrosine phosphatases in glioma biology
Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas