35 research outputs found

    El Apego Va a Juicio: Problemas de Custodia y Protección Infantil1

    Get PDF
    Attachment theory and research are drawn upon in many applied settings, including family courts, but misunderstandings are widespread and sometimes result in misapplications. The aim of this consensus statement is, therefore, to enhance understanding, counter misinformation, and steer family-court utilisation of attachment theory in a supportive, evidence-based direction, especially with regard to child protection and child custody decision-making. This article is divided into two parts. In the first part, we address problems related to the use of attachment theory and research in family courts, and discuss reasons for these problems. To this end, we examine family court applications of attachment theory in the current context of the best-interest-of-the-child standard, discuss misunderstandings regarding attachment theory, and identify factors that have hindered accurate implementation. In the second part, we provide recommendations for the application of attachment theory and research. To this end, we set out three attachment principles: the child’s need for familiar, non-abusive caregivers; the value of continuity of good-enough care; and the benefits of networks of attachment relationships. We also discuss the suitability of assessments of attachment quality and caregiving behaviour to inform family court decision-making. We conclude that assessments of caregiver behaviour should take center stage. Although there is dissensus among us regarding the use of assessments of attachment quality to inform child custody and child-protection decisions, such assessments are currently most suitable for targeting and directing supportive interventions. Finally, we provide directions to guide future interdisciplinary research collaboration

    E6-mediated activation of JNK drives EGFR signalling to promote proliferation and viral oncoprotein expression in cervical cancer

    Get PDF
    Human papillomaviruses (HPV) are a major cause of malignancy worldwide, contributing to ~5% of all human cancers including almost all cases of cervical cancer and a growing number of ano-genital and oral cancers. HPV-induced malignancy is primarily driven by the viral oncogenes, E6 and E7, which manipulate host cellular pathways to increase cell proliferation and enhance cell survival, ultimately predisposing infected cells to malignant transformation. Consequently, a more detailed understanding of viral-host interactions in HPV-associated disease offers the potential to identify novel therapeutic targets. Here, we identify that the c-Jun N-terminal kinase (JNK) signalling pathway is activated in cervical disease and in cervical cancer. The HPV E6 oncogene induces JNK1/2 phosphorylation in a manner that requires the E6 PDZ binding motif. We show that blockade of JNK1/2 signalling using small molecule inhibitors, or knockdown of the canonical JNK substrate c-Jun, reduces cell proliferation and induces apoptosis in cervical cancer cells. We further demonstrate that this phenotype is at least partially driven by JNK-dependent activation of EGFR signalling via increased expression of EGFR and the EGFR ligands EGF and HB-EGF. JNK/c-Jun signalling promoted the invasive potential of cervical cancer cells and was required for the expression of the epithelial to mesenchymal transition (EMT)-associated transcription factor Slug and the mesenchymal marker Vimentin. Furthermore, JNK/c-Jun signalling is required for the constitutive expression of HPV E6 and E7, which are essential for cervical cancer cell growth and survival. Together, these data demonstrate a positive feedback loop between the EGFR signalling pathway and HPV E6/E7 expression, identifying a regulatory mechanism in which HPV drives EGFR signalling to promote proliferation, survival and EMT. Thus, our study has identified a novel therapeutic target that may be beneficial for the treatment of cervical cancer

    Targeting MLL Methyltransferases Enhances the Antitumor Effects of PI3K Inhibition in Hormone Receptor–positive Breast Cancer

    No full text
    The high frequency of aberrant PI3K pathway activation in hormone receptor–positive (HR⁺) breast cancer has led to the development, clinical testing, and approval of the p110α-selective PI3K inhibitor alpelisib. The limited clinical efficacy of alpelisib and other PI3K inhibitors is partially attributed to the functional antagonism between PI3K and estrogen receptor (ER) signaling, which is mitigated via combined PI3K inhibition and endocrine therapy. We and others have previously demonstrated chromatin-associated mechanisms by which PI3K supports cancer development and antagonizes ER signaling through the modulation of the H3K4 methylation axis, inhibition of KDM5A promoter H3K4 demethylation and KMT2D/MLL4-directed enhancer H3K4 methylation. Here we show that inhibition of the H3K4 histone methyltransferase MLL1 in combination with PI3K inhibition impairs HR+ breast cancer clonogenicity and cell proliferation. While combined PI3K/MLL1 inhibition reduces PI3K/AKT signaling and H3K4 methylation, MLL1 inhibition increases PI3K/AKT signaling through the dysregulation of gene expression associated with AKT activation. These data reveal a feedback loop between MLL1 and AKT whereby MLL1 inhibition reactivates AKT. We show that combined PI3K and MLL1 inhibition synergizes to cause cell death in in vitro and in vivo models of HR⁺ breast cancer, which is enhanced by the additional genetic ablation of the H3K4 methyltransferase and AKT target KMT2D/MLL4. Together, our data provide evidence of a feedback mechanism connecting histone methylation with AKT and may support the preclinical development and testing of pan-MLL inhibitors. Significance: Here the authors leverage PI3K/AKT-driven chromatin modification to identify histone methyltransferases as a therapeutic target. Dual PI3K and MLL inhibition synergize to reduce clonogenicity and cell proliferation, and promote in vivo tumor regression. These findings suggest patients with PIK3CA-mutant, HR⁺ breast cancer may derive clinical benefit from combined PI3K/MLL inhibition.ISSN:2767-976
    corecore