494 research outputs found

    On the relationship between topological and geometric defects

    Full text link
    The study of topology in solids is undergoing a renaissance following renewed interest in the properties of ferroic domain walls as well as recent discoveries regarding topological insulators and skyrmionic lattices. Each of these systems possess a property that is `protected' in a symmetry sense, and is defined rigorously using a branch of mathematics known as topology. In this article we review the formal definition of topological defects as they are classified in terms of homotopy theory, and discuss the precise symmetry-breaking conditions that lead to their formation. We distinguish topological defects from geometric defects, which arise from the details of the stacking or structure of the material but are not protected by symmetry. We provide simple material examples of both topological and geometric defect types, and discuss the implications of the classification on the resulting material properties

    Non-d0d^0 Mn-driven ferroelectricity in antiferromagnetic BaMnO3_3

    Full text link
    Using first-principles density functional theory we predict a ferroelectric ground state -- driven by off-centering of the magnetic Mn4+^{4+} ion -- in perovskite-structure BaMnO3_3. Our finding is surprising, since the competition between energy-lowering covalent bond formation, and energy-raising Coulombic repulsions usually only favors off-centering on the perovskite BB-site for non-magnetic d0d^0 ions. We explain this tendency for ferroelectric off-centering by analyzing the changes in electronic structure between the centrosymmetric and polar states, and by calculating the Born effective charges; we find anomalously large values for Mn and O consistent with our calculated polarization of 12.8 μ\muC/cm2^2. Finally, we suggest possible routes by which the perovskite phase may be stabilized over the usual hexagonal phase, to enable a practical realization of a single-phase multiferroic.Comment: 6 pages, 3 figure

    Strain controlled oxygen vacancy formation and ordering in CaMnO3_3

    Full text link
    We use first-principles calculations to investigate the stability of bi-axially strained \textit{Pnma} perovskite CaMnO3_3 towards the formation of oxygen vacancies. Our motivation is provided by promising indications that novel material properties can be engineered by application of strain through coherent heteroepitaxy in thin films. While it is usually assumed that such epitaxial strain is accommodated primarily by changes in intrinsic lattice constants, point defect formation is also a likely strain relaxation mechanism. This is particularly true at the large strain magnitudes (>>4%) which first-principles calculations often suggest are required to induce new functionalities. We find a strong dependence of oxygen vacancy defect formation energy on strain, with tensile strain lowering the formation energy consistent with the increasing molar volume with increasing oxygen deficiency. In addition, we find that strain differentiates the formation energy for different lattice sites, suggesting its use as a route to engineering vacancy ordering in epitaxial thin films.Comment: 7 pages, 7 figure

    Magnetophononics: ultrafast spin control through the lattice

    Full text link
    Using a combination of first-principles and magnetization-dynamics calculations, we study the effect of the intense optical excitation of phonons on the magnetic behavior in insulating magnetic materials. Taking the prototypical magnetoelectric \CrO\ as our model system, we show that excitation of a polar mode at 17 THz causes a pronounced modification of the magnetic exchange interactions through a change in the average Cr-Cr distance. In particular, the quasi-static deformation induced by nonlinear phononic coupling yields a structure with a modified magnetic state, which persists for the duration of the phonon excitation. In addition, our time-dependent magnetization dynamics computations show that systematic modulation of the magnetic exchange interaction by the phonon excitation modifies the magnetization dynamics. This temporal modulation of the magnetic exchange interaction strengths using phonons provides a new route to creating non-equilibrium magnetic states and suggests new avenues for fast manipulation of spin arrangements and dynamics.Comment: 11 pages with 7 figure

    Quantum critical origin of the superconducting dome in SrTiO3_3

    Get PDF
    We investigate the origin of superconductivity in doped SrTiO3_3 (STO) using a combination of density functional and strong coupling theories within the framework of quantum criticality. Our density functional calculations of the ferroelectric soft mode frequency as a function of doping reveal a crossover from quantum paraelectric to ferroelectric behavior at a doping level coincident with the experimentally observed top of the superconducting dome. Based on this finding, we explore a model in which the superconductivity in STO is enabled by its proximity to the ferroelectric quantum critical point and the soft mode fluctuations provide the pairing interaction on introduction of carriers. Within our model, the low doping limit of the superconducting dome is explained by the emergence of the Fermi surface, and the high doping limit by departure from the quantum critical regime. We predict that the highest critical temperature will increase and shift to lower carrier doping with increasing 18^{18}O isotope substitution, a scenario that is experimentally verifiable.Comment: 4 pages + supplemental, 3 + 2 figure
    corecore