79 research outputs found

    Intrinsic gain modulation and adaptive neural coding

    Get PDF
    In many cases, the computation of a neural system can be reduced to a receptive field, or a set of linear filters, and a thresholding function, or gain curve, which determines the firing probability; this is known as a linear/nonlinear model. In some forms of sensory adaptation, these linear filters and gain curve adjust very rapidly to changes in the variance of a randomly varying driving input. An apparently similar but previously unrelated issue is the observation of gain control by background noise in cortical neurons: the slope of the firing rate vs current (f-I) curve changes with the variance of background random input. Here, we show a direct correspondence between these two observations by relating variance-dependent changes in the gain of f-I curves to characteristics of the changing empirical linear/nonlinear model obtained by sampling. In the case that the underlying system is fixed, we derive relationships relating the change of the gain with respect to both mean and variance with the receptive fields derived from reverse correlation on a white noise stimulus. Using two conductance-based model neurons that display distinct gain modulation properties through a simple change in parameters, we show that coding properties of both these models quantitatively satisfy the predicted relationships. Our results describe how both variance-dependent gain modulation and adaptive neural computation result from intrinsic nonlinearity.Comment: 24 pages, 4 figures, 1 supporting informatio

    Dynamics of epileptiform activity in mouse hippocampal slices

    Get PDF
    Increase of the extracellular K +  concentration mediates seizure-like synchronized activities in vitro and was proposed to be one of the main factors underlying epileptogenesis in some types of seizures in vivo. While underlying biophysical mechanisms clearly involve cell depolarization and overall increase in excitability, it remains unknown what qualitative changes of the spatio-temporal network dynamics occur after extracellular K +  increase. In this study, we used multi-electrode recordings from mouse hippocampal slices to explore changes of the network activity during progressive increase of the extracellular K +  concentration. Our analysis revealed complex spatio-temporal evolution of epileptiform activity and demonstrated a sequence of state transitions from relatively simple network bursts into complex bursting, with multiple synchronized events within each burst. We describe these transitions as qualitative changes of the state attractors, constructed from experimental data, mediated by elevation of extracellular K +  concentration

    The potential impact of climate change on Australia's soil organic carbon resources

    Get PDF
    BACKGROUND: Soil organic carbon (SOC) represents a significant pool of carbon within the biosphere. Climatic shifts in temperature and precipitation have a major influence on the decomposition and amount of SOC stored within an ecosystem and that released into the atmosphere. We have linked net primary production (NPP) algorithms, which include the impact of enhanced atmospheric CO(2 )on plant growth, to the SOCRATES terrestrial carbon model to estimate changes in SOC for the Australia continent between the years 1990 and 2100 in response to climate changes generated by the CSIRO Mark 2 Global Circulation Model (GCM). RESULTS: We estimate organic carbon storage in the topsoil (0–10 cm) of the Australian continent in 1990 to be 8.1 Gt. This equates to 19 and 34 Gt in the top 30 and 100 cm of soil, respectively. By the year 2100, under a low emissions scenario, topsoil organic carbon stores of the continent will have increased by 0.6% (49 Mt C). Under a high emissions scenario, the Australian continent becomes a source of CO(2 )with a net reduction of 6.4% (518 Mt) in topsoil carbon, when compared to no climate change. This is partially offset by the predicted increase in NPP of 20.3% CONCLUSION: Climate change impacts must be studied holistically, requiring integration of climate, plant, ecosystem and soil sciences. The SOCRATES terrestrial carbon cycling model provides realistic estimates of changes in SOC storage in response to climate change over the next century, and confirms the need for greater consideration of soils in assessing the full impact of climate change and the development of quantifiable mitigation strategies

    Non-nociceptive roles of opioids in the CNS: opioids' effects on neurogenesis, learning, memory and affect.

    Get PDF
    Mortality due to opioid use has grown to the point where, for the first time in history, opioid-related deaths exceed those caused by car accidents in many states in the United States. Changes in the prescribing of opioids for pain and the illicit use of fentanyl (and derivatives) have contributed to the current epidemic. Less known is the impact of opioids on hippocampal neurogenesis, the functional manipulation of which may improve the deleterious effects of opioid use. We provide new insights into how the dysregulation of neurogenesis by opioids can modify learning and affect, mood and emotions, processes that have been well accepted to motivate addictive behaviours

    Identification of a biological signature for schizophrenia in serum

    Full text link
    Biomarkers are now used in many areas of medicine but are still lacking for psychiatric conditions such as schizophrenia (SCZ). We have used a multiplex molecular profiling approach to measure serum concentrations of 181 proteins and small molecules in 250 first and recent onset SCZ, 35 major depressive disorder (MDD), 32 euthymic bipolar disorder (BPD), 45 Asperger syndrome and 280 control subjects. Preliminary analysis resulted in identification of a signature comprised of 34 analytes in a cohort of closely matched SCZ (n = 71) and control (n = 59) subjects. Partial least squares discriminant analysis using this signature gave a separation of 60-75% of SCZ subjects from controls across five independent cohorts. The same analysis also gave a separation of similar to 50% of MDD patients and 10-20% of BPD and Asperger syndrome subjects from controls. These results demonstrate for the first time that a biological signature for SCZ can be identified in blood serum. This study lays the groundwork for development of a diagnostic test that can be used as an aid for distinguishing SCZ subjects from healthy controls and from those affected by related psychiatric illnesses with overlapping symptoms. Molecular Psychiatry (2012) 17, 494-502; doi:10.1038/mp.2011.42; published online 12 April 201

    Fine-mapping of common genetic variants associated with colorectal tumor risk identified potential functional variants

    Get PDF
    Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs). We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33). We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s).National Institutes of Health; National Cancer Institute; U.S. Department of Health and Human Services

    Degradation of haloaromatic compounds

    Get PDF
    An ever increasing number of halogenated organic compounds has been produced by industry in the last few decades. These compounds are employed as biocides, for synthetic polymers, as solvents, and as synthetic intermediates. Production figures are often incomplete, and total production has frequently to be extrapolated from estimates for individual countries. Compounds of this type as a rule are highly persistent against biodegradation and belong, as "recalcitrant" chemicals, to the class of so-called xenobiotics. This term is used to characterise chemical substances which have no or limited structural analogy to natural compounds for which degradation pathways have evolved over billions of years. Xenobiotics frequently have some common features. e.g. high octanol/water partitioning coefficients and low water solubility which makes for a high accumulation ratio in the biosphere (bioaccumulation potential). Recalcitrant compounds therefore are found accumulated in mammals, especially in fat tissue, animal milk supplies and also in human milk. Highly sophisticated analytical techniques have been developed for the detection of organochlorines at the trace and ultratrace level

    Experiments in extrusion, Part 2 - the hot extrusion of beryllium.

    No full text
    A technique for the hot extrusion of beryllium powder within a mild steel sheath has been developed. Limitations exist with this technique in the control of extruded dimensions, particularly on complex sections or where the sheath thickness is greater than about 0.020 inch. The use of pre-consolidated powder billets is recommended to reduce the danger of the sheath buckling or splitting during extrusion and to improve the surface finish and dimensions of the product. Pick-up of oxygen and nitrogen by the beryllium was observed where the beryllium was not completely sealed from the atmosphere during heating and extrusion. This factor affected the mechanical properties of the material, particularly hardness. The mechanical properties of the sections were determined as a function of extrusion conditions; these properties are sensitive to the choice of extrusion temperature, presumably reflecting a tendency for residual work hardening to increase at the lower extrusion temperatures
    • …
    corecore