239 research outputs found

    Photoreceptor perturbation around subretinal drusenoid deposits as revealed by adaptive optics scanning laser ophthalmoscopy

    Get PDF
    PURPOSE: To describe the microscopic structure of photoreceptors impacted by subretinal drusenoid deposits, also called pseudodrusen, an extracellular lesion associated with age-related macular degeneration (AMD), using adaptive optics scanning laser ophthalmoscopy (AOSLO). DESIGN: Observational case series. METHODS: We recruited 53 patients with AMD and 10 age-similar subjects who had normal retinal health. All subjects underwent color fundus photography, infrared reflectance, red-free reflectance, autofluorescence, and spectral-domain optical coherence tomography (OCT). Subretinal drusenoid deposits were classified by a 3-stage OCT-based grading system. Lesions and surrounding photoreceptors were examined by AOSLO. RESULTS: Subretinal drusenoid deposits were found in 26 eyes of 13 patients with AMD and imaged by AOSLO and spectral-domain OCT in 18 eyes (n = 342 lesions). Spectral-domain OCT showed subretinal drusenoid deposits as highly reflective material accumulated internal to the retinal pigment epithelium. AOSLO revealed that photoreceptor reflectivity was qualitatively reduced by stage 1 subretinal drusenoid deposits and was greatly reduced by stage 2. AOSLO presented a distinct structure in stage 3, a hyporeflective annulus consisting of deflected, degenerated or absent photoreceptors. A central core with a reflectivity superficially resembling photoreceptors is formed by the lesion material itself. A hyporeflective gap in the photoreceptor ellipsoid zone on either side of this core shown in spectral-domain OCT corresponded to the hyporeflective annulus seen by AOSLO. CONCLUSIONS: AOSLO and multimodal imaging of subretinal drusenoid deposits indicate solid, space-filling lesions in the subretinal space. Associated retinal reflectivity changes are related to lesion stages and are consistent with perturbations to photoreceptors, as suggested by histology

    Consensus Nomenclature for Reporting Neovascular Age-Related Macular Degeneration Data: Consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group

    Get PDF
    © 2019 American Academy of Ophthalmology Purpose: To establish a process to evaluate and standardize a state-of-the-art nomenclature for reporting neovascular age-related macular degeneration (AMD) data. Design: Consensus meeting. Participants: An international panel of retina specialists, imaging and image reading center experts, and ocular pathologists. Methods: During several meetings organized under the auspices of the Macula Society, an international study group discussed and codified a set nomenclature framework for classifying the subtypes of neovascular AMD and associated lesion components. Main Outcome Measures: A consensus classification of neovascular AMD. Results: The study group created a standardized working definition of AMD. The components of neovascular AMD were defined and subclassified. Disease consequences of macular neovascularization were delineated. Conclusions: The framework of a consensus nomenclature system, a definition of AMD, and a delineation of the subtypes of neovascular AMD were developed. Establishing a uniform set of definitions will facilitate comparison of diverse patient groups and different studies. The framework presented is modified and updated readily, processes that are anticipated to occur on a periodic basis. The study group suggests that the consensus standards outlined in this article be used in future reported studies of neovascular AMD and clinical practice

    OCT Angiography (OCTA) in Retinal Diagnostics

    Get PDF
    Optical coherence tomography angiography (OCTA) is an imaging modality which can be applied in ophthalmology to provide detailed visualization of the perfusion of vascular networks in the eye. Compared to previous state of the art dye-based imaging, such as fluorescein angiography, OCTA is non-invasive, time-efficient, and it allows for the examination of retinal vasculature in 3D. These advantages of the technique combined with the good usability in commercial devices led to a quick adoption of the new modality in the clinical routine. However, the interpretation of OCTA data is not without problems: Commonly observed image artifacts and the quite involved algorithmic details of OCTA signal construction can make the clinical assessment of OCTA exams challenging. In this article we describe the technical background of OCTA and discuss the data acquisition process, common image visualization techniques, as well as limitations and sources of artifacts of the modality. Examples of clinical cases underline the increasing importance of the OCTA technology in ophthalmology and its relation to dye-based angiography

    Identifying characteristic features of the retinal and choroidal vasculature in choroideremia using optical coherence tomography angiography

    Get PDF
    PURPOSE: Using optical coherence tomography angiography (OCTA) to investigate the area with flow in the superficial retinal vessel network (SVRN) and choriocapillaris (CC) layer among male subjects with choroideremia (CHM), female carriers, and normal controls to identify vascular changes. PATIENTS AND METHODS: Images of SRVN and CC layer were acquired in 9 affected males, 5 female carriers, and 14 age- and gender-matched controls using the Angiovue software of the RTVue XR Avanti. RESULTS: The mean age was 33 years for affected male CHM patients (median 30 years), 46 years for female carriers (median 53 years), and 39 years for controls (median 38.5). Mean SRVN area±SD in subjects with CHM was 12.93±2.06 mm², in carrier subjects 15.36±0.60 mm², and in controls 15.30±1.35 mm² (P<0.01). The mean CC area±SD with flow was 6.97±5.26 mm² in CHM subjects, 21.65±0.17 mm² in carriers and 21.36±0.76 mm² in controls (P<0.01). SRVN and CC area with flow showed a negative correlation in CHM subjects with the age (r=−0.86; P<0.003 and r=−0.77; P<0.01, respectively). CC area with flow had a positive correlation with SRVN (r=0.83, P<0.001). Overall, visual acuity had a negative correlation with SRVN and CC area with flow (r=−0.67, P<0.001 and r=−0.57, P<0.002, respectively). CONCLUSIONS: This is the first study to highlight changes in the SRVN in CHM subjects. OCTA detected a reduced area with flow in both retinal and choroidal circulations, and may be a useful tool for monitoring natural history and disease progression in forthcoming clinical trials

    Repeatability of Foveal Measurements Using Spectralis Optical Coherence Tomography Segmentation Software

    Get PDF
    PURPOSE: To investigate repeatability and reproducibility of thickness of eight individual retinal layers at axial and lateral foveal locations, as well as foveal width, measured from Spectralis spectral domain optical coherence tomography (SD-OCT) scans using newly available retinal layer segmentation software. METHODS: High-resolution SD-OCT scans were acquired for 40 eyes of 40 young healthy volunteers. Two scans were obtained in a single visit for each participant. Using new Spectralis segmentation software, two investigators independently obtained thickness of each of eight individual retinal layers at 0°, 2° and 5° eccentricities nasal and temporal to foveal centre, as well as foveal width measurements. Bland-Altman Coefficient of Repeatability (CoR) was calculated for inter-investigator and inter-scan agreement of all retinal measurements. Spearman's ρ indicated correlation of manually located central retinal thickness (RT0) with automated minimum foveal thickness (MFT) measurements. In addition, we investigated nasal-temporal symmetry of individual retinal layer thickness within the foveal pit. RESULTS: Inter-scan CoR values ranged from 3.1μm for axial retinal nerve fibre layer thickness to 15.0μm for the ganglion cell layer at 5° eccentricity. Mean foveal width was 2550μm ± 322μm with a CoR of 13μm for inter-investigator and 40μm for inter-scan agreement. Correlation of RT0 and MFT was very good (ρ = 0.97, P 0.05); however this symmetry could not be found at 5° eccentricity. CONCLUSIONS: We demonstrate excellent repeatability and reproducibility of each of eight individual retinal layer thickness measurements within the fovea as well as foveal width using Spectralis SD-OCT segmentation software in a young, healthy cohort. Thickness of all individual retinal layers were symmetrical at 2°, but not at 5° eccentricity away from the fovea

    The Angio-Fibrotic Switch of VEGF and CTGF in Proliferative Diabetic Retinopathy

    Get PDF
    BACKGROUND: In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) cause blindness by neovascularization and subsequent fibrosis, but their relative contribution to both processes is unknown. We hypothesize that the balance between levels of pro-angiogenic VEGF and pro-fibrotic CTGF regulates angiogenesis, the angio-fibrotic switch, and the resulting fibrosis and scarring. METHODS/PRINCIPAL FINDINGS: VEGF and CTGF were measured by ELISA in 68 vitreous samples of patients with proliferative DR (PDR, N = 32), macular hole (N = 13) or macular pucker (N = 23) and were related to clinical data, including degree of intra-ocular neovascularization and fibrosis. In addition, clinical cases of PDR (n = 4) were studied before and after pan-retinal photocoagulation and intra-vitreal injections with bevacizumab, an antibody against VEGF. Neovascularization and fibrosis in various degrees occurred almost exclusively in PDR patients. In PDR patients, vitreous CTGF levels were significantly associated with degree of fibrosis and with VEGF levels, but not with neovascularization, whereas VEGF levels were associated only with neovascularization. The ratio of CTGF and VEGF was the strongest predictor of degree of fibrosis. As predicted by these findings, patients with PDR demonstrated a temporary increase in intra-ocular fibrosis after anti-VEGF treatment or laser treatment. CONCLUSIONS/SIGNIFICANCE: CTGF is primarily a pro-fibrotic factor in the eye, and a shift in the balance between CTGF and VEGF is associated with the switch from angiogenesis to fibrosis in proliferative retinopathy

    Management of retinal vascular diseases: a patient-centric approach

    Get PDF
    Retinal vascular diseases are a leading cause of blindness in the Western world. Advancement in the clinical management of these diseases has been fast-paced, with new treatments becoming available as well as license extensions of existing treatments. Vascular endothelial growth factor (VEGF) has been implicated in certain retinal vascular diseases, including wet age-related macular degeneration (AMD), diabetic macular oedema (DMO), and retinal vein occlusion (RVO). Treatment of wet AMD and visual impairment due to either DMO or macular oedema secondary to RVO with an anti-VEGF on an as needed basis, rather than a fixed schedule, allows an individualised treatment approach; providing treatment when patients are most likely to benefit from it, while minimising the number of unnecessary intravitreal injections. Thus, an individualised treatment regimen reduces the chances of over-treatment and under-treatment, optimising both the risk/benefit profile of the treatment and the efficient use of NHS resource. Streamlining of treatment for patients with wet AMD and visual impairment due to either DMO or macular oedema secondary to RVO, by using one treatment with similar posology across all three diseases, may help to minimise burden of clinic capacity and complexity and hence optimise patient outcomes. Informed treatment decisions and efficient clinic throughput are important for optimal patient outcomes in the fast-changing field of retinal vascular diseases
    corecore