425 research outputs found

    Mars surface sample return missions via solar electric propulsion

    Get PDF
    The characteristics and capabilities are described of solar electric propulsion (SEP) for performing Mars Surface Sample Return (MSSR) missions. The scope of the study emphasizes trajectory/payload analysis and the comparison of mission/system tradeoff options. The MSSR mission is examined only for the 1981-82 launch opportunity. Several other study constraints which bear directly on the results obtained are: (1) return samples in the range 5-25 kg, (2) use of lifting (offset C.G.) atmospheric entry at Mars which allows a low ratio (1.25) of entry weight to landed weight, and (3) rendezvous and docking in Mars orbit. Major results of the study are presented as performance curves of earth departure mass versus sample size for a number of different mission/system options. These options represent a spectrum of trip time, launch vehicle capability, combinations of low-thrust and ballistic maneuvers, chemical retro type, and earth recovery mode

    Augmented Reality to Engage Visitors of Science Museums through Interactive Experiences

    Get PDF
    In the last years, interactive exhibitions based on digital technologies have become widely common, thanks to their flexibility and effectiveness in engaging visitors and creating memorable experiences. One of the topics in which digital technologies can be particularly effective is the communication of abstract concepts that are difficult for the human mind to imagine. An emblematic example is the astronomy discipline, which requires us to imagine and understand phenomena far away from our everyday life. In this paper, the authors present a research project, MARSS, in which digital technologies are used effectively to enhance the Users' Experience of the Museo Astronomico di Brera located in Milan. Specifically, the MARSS project aims at designing and developing a new digital journey inside the museum to allow different categories of visitors to enjoy the exhibition in an engaging and interactive way. The paper presents the design and development phases of the experience and its evaluation with users. The results of the evaluation indicate that the digital interactive experience is appreciated by users and is successful in translating the content of high scientific value into more engaging and easily understandable elements

    N-Acylethanolamine Acid Amidase (NAAA): Structure, Function, and Inhibition

    Get PDF
    N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase primarily found in the endosomal-lysosomal compartment of innate and adaptive immune cells. NAAA catalyzes the hydrolytic deactivation of palmitoylethanolamide (PEA), a lipid-derived peroxisome proliferator-activated receptor-α (PPAR-α) agonist that exerts profound anti-inflammatory effects in animal models. Emerging evidence points to NAAA-regulated PEA signaling at PPAR-α as a critical control point for the induction and the resolution of inflammation and to NAAA itself as a target for anti-inflammatory medicines. The present Perspective discusses three key aspects of this hypothesis: the role of NAAA in controlling the signaling activity of PEA; the structural bases for NAAA function and inhibition by covalent and noncovalent agents; and finally, the potential value of NAAA-targeting drugs in the treatment of human inflammatory disorders

    Antidepressant-like effects of pharmacological inhibition of FAAH activity in socially isolated female rats

    Get PDF
    Pharmacological inhibition of the enzyme fatty acid amide hydrolase (FAAH), which terminates signaling of the endocannabinoid N-arachidonoylethanolamine (or anandamide, AEA), exerts favourable effects in rodent models of stress-related depression. Yet although depression seems to be more common among women than men and in spite of some evidence of sex differences in treatment efficacy, preclinical development of FAAH inhibitors for the pharmacotherapy of stress-related depression has been predominantly conducted in male animals. Here, adult female rats were exposed to six weeks of social isolation and, starting from the second week, treated with the FAAH inhibitor URB694 (0.3 mg/kg/day, i.p.) or vehicle. Compared to pair-housed females, socially isolated female rats treated with vehicle developed behavioral (mild anhedonia, passive stress coping) and physiological (reduced body weight gain, elevated plasma corticosterone levels) alterations. Moreover, prolonged social isolation provoked a reduction in brain-derived neurotrophic factor (BDNF) and AEA levels within the hippocampus. Together, these changes are indicative of an increased risk of developing a depressive-like state. Conversely, pharmacological inhibition of FAAH activity with URB694 restored both AEA and BDNF levels within the hippocampus of socially isolated rats and prevented the development of behavioral and physiological alterations. These results suggest a potential interplay between AEA-mediated signaling and hippocampal BDNF in the pathogenesis of depression-relevant behaviors and physiological alterations and antidepressant action of FAAH inhibition in socially isolated female rats

    Calcium Looping for Thermochemical Storage: Assessment of Intrinsic Reaction Rate and Estimate of Kinetic/Transport Parameters for Synthetic CaO/Mayenite Particles from TGA Data

    Get PDF
    Mayenite-supported CaO represents an affordable and safetycompliant candidate material for thermochemical storage processes. We here analyze the thermogravimetric analysis (TGA) performance of synthetic CaO/mayenite micrometric powder under carbonatation/calcination looping and develop a model to interpret and analyze the experimental results. In the experimental campaign, calcination is run at 900 degrees C, while the carbonatation temperature is varied between 600 and 800 degrees C. For the carbonatation reaction, a generalized shrinking core model assuming a thermodynamically consistent first-order kinetic and a conversion-dependent diffusivity of CO2 inside the porous CaCO3 layer is validated through TGA carbonatation tests conducted with CO2/N-2 mixtures at different compositions. Interestingly, the kinetic constant of this reaction is found to be relatively insensitive to the temperature in the interval considered. In contrast, diffusion-limited regimes are never found for the calcination reaction so that this phase of the cycle can be predicted based on a single kinetic constant of the heterogeneous reaction. This constant is found to follow the typical Arrhenius-type dependence on temperature. Sizably different kinetic and transport parameters are obtained in the first carbonation performed on virgin CaO/mayenite particles with respect to those associated with subsequent cycles. When different parameters are afforded for the first and following cycles, the shrinking core model proposed closely predicts the TGA data over five CaO/CaCO3 cycles. The results found constitute an essential preliminary piece of information for designing equipment geometry and operating conditions of industrial-scale reactors. In this respect, knowledge of the parameters defining the intrinsic reaction rates and diffusive transport is essential in defining the optimal conversion of the material associated with minimal looping time

    The combined use of neutrophil gelatinase-associated lipocalin and brain natriuretic peptide improves risk stratification in pediatric cardiac surgery

    Get PDF
    Abstract Background: The aim of this study is to test the hypothesis whether the combined use of a cardio-specific biomarker, the brain natriuretic peptide (BNP) and a marker of early renal damage, the assay of urinary neutrophil gelatinase-associated lipocalin (uNGAL), may improve risk stratification in pediatric cardiac surgery. Methods: We prospectively enrolled 135 children [median age 7 (interquartile range 1–49) months] undergoing to cardiac surgery for congenital heart disease. All biomarkers were evaluated pre- and post-operatively at different times after cardiopulmonary-bypass (CPB): uNGAL at 2, 6 and 12 h; BNP at 12 and 36 h; serum creatinine at 2, 6, 12, and 36 h. Primary endpoints were development of acute kidney injury (AKI) (defined as 1.5 serum creatinine increase) and intubation time. Results: AKI occurred in 39% of patients (65% neonates and 32% older children, p=0.004). The peak of uNGAL values occurred more frequently at 2 h. uNGAL values at 2 h [median 28.2 (interquartile range 7.0–124.6) ng/L] had a good diagnostic accuracy for early diagnosis of AKI with an AUC (area under the curve) ROC (receiver operating characteristic) curve of 0.85 (SE 0.034). Using multivariable logistic regression analysis, development of AKI was significantly associated with uNGAL values at 2 h after CPB [OR=1.88 (1.30–2.72, p=0.001)], together with the CPB time and Aristotle score, as an index of complexity of the surgical procedure, while pre-operative BNP values were not. Furthermore, uNGAL and pre-operative BNP values (together with Aristotle score) were significantly associated with adverse outcome (longer intubation time and mortality). Conclusions: Pre-operative BNP and uNGAL values after surgery (together with the Aristotle score) were independently associated with a more severe course and worse outcome in children undergoing cardiac surgery for congenital heart disease.</jats:p

    The digital whomanities project. Best practices for digital pedagogy in the pandemic era

    Get PDF
    This paper aims to enter the ongoing debate about the critical issues of digital pedagogy through the presentation of Digital WHOmanities, a series of online conferences and workshops held at the University of Bologna. Distance learning has become one of the most discussed topics in educational institutions during the spread of Covid-19, revealing a discrepancy between the rapid development of technology and the ability of learning environments to adapt to this turn. In view of this ongoing debate, Digital WHOmanities tried to define the complex and multifaceted figure of the digital humanist and to provide a methodological framework that could foster further online academic initiatives. Specifically, the accurate organization of timing and contents and the adoption of synchronous and asynchronous approaches have highlighted the effectiveness of flexible digital didactics

    Stability in a long length NbTi CICC

    Get PDF
    A crucial issue for a superconducting coil in order to be safely used in the magnetic system of a fusion reactor is stability against all foreseen disturbances. To simulate the fusion machine conditions, including off-normal events, e.g. plasma disruptions, the energy deposition has to be spread over a "long length" cable in conduit conductor (CICC) and a background magnetic field is needed. We have therefore designed and built an experiment consisting of an instrumented NbTi test module inserted in a pair of co-axial pulsed copper coils. A 0.6 m diameter superconducting coil provides a background magnetic field up to 3 T. Calibration of the energy inductively coupled between the pulsed coils and the module has been obtained measuring the system temperature increase just after the pulse by means of thermometers positioned along the conductor. Stability vs. operating current I/sub op/ has been examined for different helium temperatures and different background magnetic fields. The finite element code Gandalf for the stability and quenching transients analysis in forced flow cooled superconducting coils has been run to check the matching with the experimental results. (3 refs)

    Generation of Impulses from Single Frequency Inputs Using Non-linear Propagation in Spherical Chains

    Get PDF
    This paper investigates the use of chains of spheres to produce impulses. An ultrasonic horn is used to generate high amplitude sinusoidal signals. These are then input into chains of spheres, held together using a minimal force. The result is a non-linear, dispersive system, within which solitary waves can exist. The authors have discovered that resonances can be created, caused by the multiple reflection of solitary waves within the chain. The multiply-reflecting impulses can have a wide bandwidth, due to the inherent nonlinearity of the contact between spheres. It is found that the effect only occurs for certain numbers of spheres in the chain for a given input frequency, a result of the creation of a nonlinear normal mode of resonance. The resulting impulses have many applications, potentially creating high amplitude impulses with adjustable properties, depending on both the nature and number of spheres in the chain, and the frequency and amplitude of excitatio
    • …
    corecore