2,714 research outputs found
Power Density Spectra of Gamma-Ray Bursts in the Internal Shock Model
We simulate Gamma-Ray Bursts arising from internal shocks in relativistic
winds, calculate their power density spectrum (PDS), and identify the factors
to which the PDS is most sensitive: the wind ejection features, which determine
the wind dynamics and its optical thickness, and the energy release parameters,
which give the pulse 50-300 keV radiative efficiency. For certain combinations
of ejection features and wind parameters the resulting PDS exhibits the
features observed in real bursts. We found that the upper limit on the
efficiency of conversion of wind kinetic energy into 50-300 keV photons is
1%. Winds with a modulated Lorentz factor distribution of the ejecta
yield PDSs in accord with current observations and have efficiencies closer to
, while winds with a random, uniform Lorentz factor ejection must be
optically thick to the short duration pulses to produce correct PDSs, and have
an overall efficiency around .Comment: 6 pages, 4 figures, Latex, submitted to The Astrophysical Journal
(05/04/99
Improved calibration of the radii of cool stars based on 3D simulations of convection: implications for the solar model
Main sequence, solar-like stars (M < 1.5 Msun) have outer convective
envelopes that are sufficiently thick to affect significantly their overall
structure. The radii of these stars, in particular, are sensitive to the
details of inefficient, super-adiabatic convection occurring in their outermost
layers. The standard treatment of convection in stellar evolution models, based
on the Mixing-Length Theory (MLT), provides only a very approximate description
of convection in the super-adiabatic regime. Moreover, it contains a free
parameter, alpha_MLT, whose standard calibration is based on the Sun, and is
routinely applied to other stars ignoring the differences in their global
parameters (e.g., effective temperature, gravity, chemical composition) and
previous evolutionary history. In this paper, we present a calibration of
alpha_MLT based on three-dimensional radiation-hydrodynamics (3D RHD)
simulations of convection. The value of alpha_MLT is adjusted to match the
specific entropy in the deep, adiabatic layers of the convective envelope to
the corresponding value obtained from the 3D RHD simulations, as a function of
the position of the star in the (log g, log T_eff) plane and its chemical
composition. We have constructed a model of the present-day Sun using such
entropy-based calibration. We find that its past luminosity evolution is not
affected by the entropy calibration. The predicted solar radius, however,
exceeds that of the standard model during the past several billion years,
resulting in a lower surface temperature. This illustrative calculation also
demonstrates the viability of the entropy approach for calibrating the radii of
other late-type stars.Comment: 16 pages, 14 figures, accepted for publication in the Astrophysical
Journa
Analysis of Temporal Features of Gamma Ray Bursts in the Internal Shock Model
In a recent paper we have calculated the power density spectrum of Gamma-Ray
Bursts arising from multiple shocks in a relativistic wind. The wind optical
thickness is one of the factors to which the power spectrum is most sensitive,
therefore we have further developed our model by taking into account the photon
down-scattering on the cold electrons in the wind. For an almost optically
thick wind we identify a combination of ejection features and wind parameters
that yield bursts with an average power spectrum in agreement with the
observations, and with an efficiency of converting the wind kinetic energy in
50-300 keV emission of order 1%. For the same set of model features the
interval time between peaks and pulse fluences have distributions consistent
with the log-normal distribution observed in real bursts.Comment: ApJ in press, 2000; with slight revisions; 12 pag, 6 fi
The Yale-Potsdam Stellar Isochrones (YaPSI)
We introduce the Yale-Potsdam Stellar Isochrones (YaPSI), a new grid of
stellar evolution tracks and isochrones of solar-scaled composition. In an
effort to improve the Yonsei-Yale database, special emphasis is placed on the
construction of accurate low-mass models (Mstar < 0.6 Msun), and in particular
of their mass-luminosity and mass-radius relations, both crucial in
characterizing exoplanet-host stars and, in turn, their planetary systems. The
YaPSI models cover the mass range 0.15 to 5.0 Msun, densely enough to permit
detailed interpolation in mass, and the metallicity and helium abundance ranges
[Fe/H] = -1.5 to +0.3, and Y = 0.25 to 0.37, specified independently of each
other (i.e., no fixed Delta Y/Delta Z relation is assumed). The evolutionary
tracks are calculated from the pre-main sequence up to the tip of the red giant
branch. The isochrones, with ages between 1 Myr and 20 Gyr, provide UBVRI
colors in the Johnson-Cousins system, and JHK colors in the homogeneized
Bessell & Brett system, derived from two different semi-empirical Teff-color
calibrations from the literature. We also provide utility codes, such as an
isochrone interpolator in age, metallicity, and helium content, and an
interface of the tracks with an open-source Monte Carlo Markov-Chain tool for
the analysis of individual stars. Finally, we present comparisons of the YaPSI
models with the best empirical mass- luminosity and mass-radius relations
available to date, as well as isochrone fitting of well-studied steComment: 17 pages, 14 figures; accepted for publication in the Astrophysical
Journa
Glacio and hydro-isostasy in the Mediterranean Sea: Clark’s zones and role of remote ice sheets
Solving the sea-level equation for a spherically symmetric Earth we study the relative sea-level curves in the
Mediterranean Sea in terms of Clark’s zones and we explore their sensitivity to the time-history of Late-Pleistocene
ice aggregates. Since the Mediterranean is an intermediate field region with respect to the former ice
sheets, glacio- and hydro-isostasy both contribute to sea-level variations throughout the Holocene. In the bulk of
the basin, subsidence of the sea floor results in a monotonous sea-level rise, whereas along continental margins
water loading produces the effect of «continental levering», which locally originates marked highstands followed
by a sea-level fall. To describe such peculiar pattern of relative sea-level in this and other mid-latitude closed
basins we introduce a new Clark’s zone (namely, Clark’s zone VII). Using a suite of publicly available ice sheet
chronologies, we identify for the first time a distinct sensitivity of predictions to the Antarctic ice sheet. In particular,
we show that the history of mid to Late Holocene sea-level variations along the coasts of SE Tunisia may
mainly reflect the melting of Antarctica, by a consequence of a mutual cancellation of the effects from the Northern
Hemisphere ice-sheets at this specific site. Ice models incorporating a delayed melting of Antarctica may account
for the observations across the Mediterranean, but fail to reproduce the SE Tunisia highstand
Microphones’ Directivity for the Localization of Sound Sources
In a recent paper [P. Rizzo, G. Bordoni, A. Marzani, and J. Vipperman, “Localization of Sound Sources by
Means of Unidirectional Microphones, Meas. Sci. Tech., 20, 055202 (12pp), 2009] the proof-of-concept of an
approach for the localization of acoustic sources was presented. The method relies on the use of unidirectional
microphones and amplitude-based signals’ features to extract information about the direction of the incoming sound.
By intersecting the directions identified by a pair of microphones, the position of the emitting source can be
identified.
In this paper we expand the work presented previously by assessing the effectiveness of the approach for the
localization of an acoustic source in an indoor setting. As the method relies on the accurate knowledge of the
microphones directivity, analytical expression of the acoustic sensors polar pattern were derived by testing them in
an anechoic chamber. Then an experiment was conducted in an empty laboratory by using an array of three
unidirectional microphones. The ability to locate the position of a commercial speaker placed at different positions
in the room is discussed.
The objective of this study is to propose a valid alternative to the common application of spaced arrays and
therefore to introduce a new generation of reduced size sound detectors and localizers. The ability of the proposed
methodology to locate the position of a commercial speaker placed at different positions in the room was evaluated
and compared to the accuracy provided by a conventional time delay estimate algorithm
Elastoplastic Damaging Model for Adhesive Anchor Systems. I: Theoretical Formulation and Numerical Implementation
In this and in the companion paper, the mechanical response of adhesive anchor systems is theoretically and numerically predicted and experimentally observed. The theoretical prediction is on the basis of an elastoplastic damaging model formulated to predict the structural response associated with the development of a fracture in adhesive anchor systems. This part describes the analytical model developed in the framework of a thermodynamically consistent theory, which assumes adhesion where the structure is sound, and friction in correspondence with the fracture. Isotropic damage is considered. The model can predict the structural behavior at the interface between two surfaces of ductile, brittle, or quasi-brittle materials. The Helmholtz free energy is written to model the materials' hardening or softening. Isotropic damage is considered, and the possible effects of dilatancy are taken into account, including nonassociative flow rules. The formulation is implemented into the finite-element code FEAP. In the companion paper, the new model is adopted to predict the mechanical response to the pullout force of postinstalled rebar chemically bonded in concrete. The analytical model and the numerical implementation are experimentally validated by several pullout tests, which are monitored by using an acoustic-emission technique
Elastoplastic Damaging Model for Adhesive Anchor Systems. II: Numerical and Experimental Validation
This paper presents the numerical and experimental validation of the analytical elastoplastic damaging model proposed in the companion paper (Part I). The validation was carried out by describing the pullout failure of epoxy adhesive anchors. Pullout tests were simulated numerically and performed experimentally. Several specimens made of a rebar embedded in a hardened concrete cylinder by means of polyester resin were tested. Conventional strain gauges and acoustic emission (AE) sensors were used to evaluate the structural response of the system and to monitor the onset and progression of structural damage, respectively. The parametric analysis and the moment tensor analysis of the AE data were used to discriminate among different sources of damage. The results show the ability of the model to predict the response of the anchors and the suitability of the AE method to monitor damage onset and propagation and to discriminate among different source of damage
- …