28 research outputs found

    Influenza surveillance capacity improvements in Africa during 2011-2017.

    Get PDF
    BACKGROUND: Influenza surveillance helps time prevention and control interventions especially where complex seasonal patterns exist. We assessed influenza surveillance sustainability in Africa where influenza activity varies and external funds for surveillance have decreased. METHODS: We surveyed African Network for Influenza Surveillance and Epidemiology (ANISE) countries about 2011-2017 surveillance system characteristics. Data were summarized with descriptive statistics and analyzed with univariate and multivariable analyses to quantify sustained or expanded influenza surveillance capacity in Africa. RESULTS: Eighteen (75%) of 24 ANISE members participated in the survey; their cumulative population of 710 751 471 represent 56% of Africa's total population. All 18 countries scored a mean 95% on WHO laboratory quality assurance panels. The number of samples collected from severe acute respiratory infection case-patients remained consistent between 2011 and 2017 (13 823 vs 13 674 respectively) but decreased by 12% for influenza-like illness case-patients (16 210 vs 14 477). Nine (50%) gained capacity to lineage-type influenza B. The number of countries reporting each week to WHO FluNet increased from 15 (83%) in 2011 to 17 (94%) in 2017. CONCLUSIONS: Despite declines in external surveillance funding, ANISE countries gained additional laboratory testing capacity and continued influenza testing and reporting to WHO. These gains represent important achievements toward sustainable surveillance and epidemic/pandemic preparedness

    Genome-wide association study of leprosy in Malawi and Mali

    Get PDF
    Leprosy is a chronic infection of the skin and peripheral nerves caused by Mycobacterium leprae. Despite recent improvements in disease control, leprosy remains an important cause of infectious disability globally. Large-scale genetic association studies in Chinese, Vietnamese and Indian populations have identified over 30 susceptibility loci for leprosy. There is a significant burden of leprosy in Africa, however it is uncertain whether the findings of published genetic association studies are generalizable to African populations. To address this, we conducted a genome-wide association study (GWAS) of leprosy in Malawian (327 cases, 436 controls) and Malian (247 cases, 368 controls) individuals. In that analysis, we replicated four risk loci previously reported in China, Vietnam and India; MHC Class I and II, LACC1 and SLC29A3. We further identified a novel leprosy susceptibility locus at 10q24 (rs2015583; combined p = 8.81 × 10-9; OR = 0.51 [95% CI 0.40 - 0.64]). Using publicly-available data we characterise regulatory activity at this locus, identifying ACTR1A as a candidate mediator of leprosy risk. This locus shows evidence of recent positive selection and demonstrates pleiotropy with established risk loci for inflammatory bowel disease and childhood-onset asthma. A shared genetic architecture for leprosy and inflammatory bowel disease has been previously described. We expand on this, strengthening the hypothesis that selection pressure driven by leprosy has shaped the evolution of autoimmune and atopic disease in modern populations. More broadly, our data highlights the importance of defining the genetic architecture of disease across genetically diverse populations, and that disease insights derived from GWAS in one population may not translate to all affected populations

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Carbonation of Calcium Silicate Hydrates as Secondary Raw Material from the Recovery of Hexafluorosilicic Acid

    No full text
    International audienceThis work focuses on the carbonation reaction of calcium silicate hydrates (CaO)(SiO2)(H2O) (CSH) powders synthesized by an aqueous process using fluorosilicic acid waste and lime as main reactants. We investigated whether these CSH could constitute a secondary raw material to produce building materials that harden at low temperature by reaction with CO2, according to a process that is commonly based on the use of minerals such as natural wollastonite (CaSiO3). CSH and wollastonite powders were placed in a gas stream consisting either of pure CO2 or of a 15 vol % CO2–85 vol % air mixture, saturated with water, at atmospheric pressure and 40 °C. Based on thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy of the products, we proved the occurrence of the carbonation reaction and we calculated the carbonation degree α for various reaction times. The structural water contained in the CSH played a beneficial role in the carbonation reaction since their carbonation degree is much higher than that of wollastonite: for a reaction time of 120 min at 40 °C, α = 75% for CSH against 12% for CaSiO3. Furthermore, carbonation promotes the formation of calcite with only 15 vol % CO2, allowing the direct use of cement plant fumes

    Leprosy persistence in the health district of Kenieba despite its elimination as a public health problem at the national level in Mali

    No full text
    WHO defined leprosy elimination as reaching a prevalence < 1 case of leprosy per 10,000 inhabitants. Mali eliminated the disease since 2001 but in 2011, it recorded 226 new cases. This has a serious involvement in term of disease spreading. Therefore, we undertook a cross sectional study in Kenieba health district, still above the WHO recommended elimination threshold to better understand the disease epidemiology and its associated potential factors. The study took place from October 2013 to September 2014. All consenting villagers, living in one of the selected villages were included and clinically examined for leprosy signs

    The Spatiotemporal Distribution and Molecular Characterization of Circulating Dengue Virus Serotypes/Genotypes in Senegal from 2019 to 2023

    No full text
    Dengue virus is becoming a major public health threat worldwide, principally in Africa. From 2016 to 2020, 23 outbreaks were reported in Africa, principally in West Africa. In Senegal, dengue outbreaks have been reported yearly since 2017. Data about the circulating serotypes and their spatial and temporal distribution were limited to outbreaks that occurred between 2017 and 2018. Herein, we describe up-to-date molecular surveillance of circulating DENV serotypes in Senegal between 2019 to 2023 and their temporal and spatial distribution around the country. For this purpose, suspected DENV-positive samples were collected and subjected to dengue detection and serotyping using RT-qPCR methods. Positive samples were used for temporal and spatial mapping. A subset of DENV+ samples were then sequenced and subjected to phylogenetic analysis. Results show a co-circulation of three DENV serotypes with an overall predominance of DENV-3. In terms of abundance, DENV-3 is followed by DENV-1, with scarce cases of DENV-2 from February 2019 to February 2022. Interestingly, data show the extinction of both serotype 1 and serotype 2 and the only circulation of DENV-3 from March 2022 to February 2023. At the genotype level, the analysis shows that sequenced strains belong to same genotype as previously described: Senegalese DENV-1 strains belong to genotype V, DENV-2 strains to the cosmopolitan genotype, and DENV-3 strains to Genotype III. Interestingly, newly obtained DENV 1–3 sequences clustered in different clades within genotypes. This co-circulation of strains belonging to different clades could have an effect on virus epidemiology and transmission dynamics. Overall, our results highlight DENV serotype replacement by DENV-3, accompanied by a wider geographic distribution, in Senegal. These results highlight the importance of virus genomic surveillance and call for further viral fitness studies using both in vitro and in vivo models, as well as in-depth phylogeographic studies to uncover the virus dispersal patterns across the country

    A Cluster Randomized Study of The Safety of Integrated Treatment of Trachoma and Lymphatic Filariasis in Children and Adults in Sikasso, Mali

    Get PDF
    <div><p>Background</p><p>Neglected tropical diseases are co-endemic in many areas of the world, including sub Saharan Africa. Currently lymphatic filariasis (albendazole/ivermectin) and trachoma (azithromycin) are treated separately. Consequently, financial and logistical benefit can be gained from integration of preventive chemotherapy programs in such areas.</p> <p>Methodology/Findings</p><p>4 villages in two co-endemic districts (Kolondièba and Bougouni) of Sikasso, Mali, were randomly assigned to coadministered treatment (ivermectin/albendazole/azithromycin) or standard therapy (ivermectin/albendazole with azithromycin 1 week later). These villages had previously undergone 4 annual MDA campaigns with ivermectin/albendazole and 2 with azithromycin. One village was randomly assigned to each treatment arm in each district. There were 7515 eligible individuals in the 4 villages, 3011(40.1%) of whom participated in the study. No serious adverse events occurred, and the majority of adverse events were mild in intensity (mainly headache, abdominal pain, diarrhoea and “other signs/symptoms”). The median time to the onset of the first event, of any type, was later (8 days) in the two standard treatment villages than in the co-administration villages. Overall the number of subjects reporting any event was similar in the co-administration group compared to the standard treatment group [18.7% (281/1501) vs. 15.8% (239/1510)]. However, the event frequency was higher in the coadministration group (30.4%) than in the standard treatment group (11.0%) in Kolondièba, while the opposite was observed in Bougouni (7.1% and 20.9% respectively). Additionally, the overall frequency of adverse events in the co-administration group (18.7%) was comparable to or lower than published frequencies for ivermectin+albendazole alone.</p> <p>Conclusions</p><p>These data suggest that co-administration of ivermectin+albendazole and azithromycin is safe; however the small number of villages studied and the large differences between them resulted in an inability to calculate a meaningful overall estimate of the difference in adverse event rates between the regimens. Further work is therefore needed before co-administration can be definitively recommended.</p> <p>Trial Registration</p><p>ClinicalTrials.gov; <a href="http://clinicaltrials.gov/ct2/show/NCT01586169" target="_blank">NCT01586169</a></p> </div
    corecore