36,126 research outputs found
Nuclear multifragmentation within the framework of different statistical ensembles
The sensitivity of the Statistical Multifragmentation Model to the underlying
statistical assumptions is investigated. We concentrate on its micro-canonical,
canonical, and isobaric formulations. As far as average values are concerned,
our results reveal that all the ensembles make very similar predictions, as
long as the relevant macroscopic variables (such as temperature, excitation
energy and breakup volume) are the same in all statistical ensembles. It also
turns out that the multiplicity dependence of the breakup volume in the
micro-canonical version of the model mimics a system at (approximately)
constant pressure, at least in the plateau region of the caloric curve.
However, in contrast to average values, our results suggest that the
distributions of physical observables are quite sensitive to the statistical
assumptions. This finding may help deciding which hypothesis corresponds to the
best picture for the freeze-out stageComment: 20 pages, 7 figure
Robustness of quantum discord to sudden death
We calculate the dissipative dynamics of two-qubit quantum discord under
Markovian environments. We analyze various dissipative channels such as
dephasing, depolarizing, and generalized amplitude damping, assuming
independent perturbation, in which each qubit is coupled to its own channel.
Choosing initial conditions that manifest the so-called sudden death of
entanglement, we compare the dynamics of entanglement with that of quantum
discord. We show that in all cases where entanglement suddenly disappears,
quantum discord vanishes only in the asymptotic limit, behaving similarly to
individual decoherence of the qubits, even at finite temperatures. Hence,
quantum discord is more robust than the entanglement against to decoherence so
that quantum algorithms based only on quantum discord correlations may be more
robust than those based on entanglement.Comment: 4 figures, 4 page
Crystallization, data collection and data processing of maltose-binding protein (MalE) from the phytopathogen Xanthomonas axonopodis pv. citri
Maltose-binding protein is the periplasmic component of the ABC transporter
responsible for the uptake of maltose/maltodextrins. The Xanthomonas axonopodis
pv. citri maltose-binding protein MalE has been crystallized at 293 Kusing
the hanging-drop vapour-diffusion method. The crystal belonged to the
primitive hexagonal space group P6_122, with unit-cell parameters a = 123.59,
b = 123.59, c = 304.20 Å, and contained two molecules in the asymetric unit. It
diffracted to 2.24 Å resolution
Noether symmetry for non-minimally coupled fermion fields
A cosmological model where a fermion field is non-minimally coupled with the
gravitational field is studied. By applying Noether symmetry the possible
functions for the potential density of the fermion field and for the coupling
are determined. Cosmological solutions are found showing that the non-minimally
coupled fermion field behaves as an inflaton describing an accelerated
inflationary scenario, whereas the minimally coupled fermion field describes a
decelerated period being identified as dark matter.Comment: Revised version accepted for publication in Classical and Quantum
Gravit
Constraining non-minimally coupled tachyon fields by Noether symmetry
A model for a spatially flat homogeneous and isotropic Universe whose
gravitational sources are a pressureless matter field and a tachyon field
non-minimally coupled to the gravitational field is analyzed. Noether symmetry
is used to find the expressions for the potential density and for the coupling
function, and it is shown that both must be exponential functions of the
tachyon field. Two cosmological solutions are investigated: (i) for the early
Universe whose only source of the gravitational field is a non-minimally
coupled tachyon field which behaves as an inflaton and leads to an exponential
accelerated expansion and (ii) for the late Universe whose gravitational
sources are a pressureless matter field and a non-minimally coupled tachyon
field which plays the role of dark energy and is the responsible of the
decelerated-accelerated transition period.Comment: 11 pages, 5 figures. Version accepted for publication in Classical
and Quantum Gravit
Dimensionality effects in the LDOS of ferromagnetic hosts probed via STM: spin-polarized quantum beats and spin filtering
We theoretically investigate the local density of states (LDOS) probed by a
STM tip of ferromagnetic metals hosting a single adatom and a subsurface
impurity. We model the system via the two-impurity Anderson Hamiltonian. By
using the equation of motion with the relevant Green functions, we derive
analytical expressions for the LDOS of two host types: a surface and a quantum
wire. The LDOS reveals Friedel-like oscillations and Fano interference as a
function of the STM tip position. These oscillations strongly depend on the
host dimension. Interestingly, we find that the spin-dependent Fermi wave
numbers of the hosts give rise to spin-polarized quantum beats in the LDOS.
While the LDOS for the metallic surface shows a damped beating pattern, it
exhibits an opposite behavior in the quantum wire. Due to this absence of
damping, the wire operates as a spatially resolved spin filter with a high
efficiency.Comment: revised tex
- …