74,998 research outputs found

    Quantum propagator for some classes of three-dimensional three-body systems

    Full text link
    In this work we solve exactly a class of three-body propagators for the most general quadratic interactions in the coordinates, for arbitrary masses and couplings. This is done both for the constant as the time-dependent couplings and masses, by using the Feynman path integral formalism. Finally the energy spectrum and the eigenfunctions are recovered from the propagators.Comment: 16 pages, no figure

    Gain and noise spectral density in an electronic parametric amplifier with added white noise

    Full text link
    In this paper, we discuss the behavior of a linear classical parametric amplifier (PA) in the presence of white noise and give theoretical estimates of the noise spectral density based on approximate Green's functions obtained by using averaging techniques. Furthermore, we give analytical estimates for parametric amplification bandwidth of the amplifier and for the noisy precursors to instability. To validate our theory we compare the analytical results with experimental data obtained in an analog circuit. We describe the implementation details and the setup used in the experimental study of the amplifier. Near the threshold to the first parametric instability, and in degenerate-mode amplification, the PA achieved very high gains in a very narrow bandwidth centered on its resonance frequency. In quasi-degenerate mode amplification, we obtained lower values of gain, but with a wider bandwidth that is tunable. The experimental data were accurately described by the predictions of the model. Moreover, we noticed spectral components in the output signal of the amplifier which are due to noise precursors of instability. The position, width, and magnitude of these components are in agreement with the noise spectral density obtained by the theory proposed here

    Search for α\alpha-cluster states in even-even Cr isotopes

    Full text link
    The α+core\alpha + \mathrm{core} structure is investigated in even-even Cr isotopes from the viewpoint of the local potential model. The comparison of Qα/AQ_{\alpha}/A values for even-even Cr isotopes and even-even A=46,54,56,58A = 46,54,56,58 isobars indicates that 46^{46}Cr and 54^{54}Cr are the most favorable even-even Cr isotopes for α\alpha-clustering. The ground state bands of the two Cr isotopes are calculated through a local α+core\alpha + \mathrm{core} potential with two variable parameters. The calculated spectra give a very good description of most experimental 46^{46}Cr and 54^{54}Cr levels. The reduced α\alpha -widths, rms intercluster separations and B(E2)B(E2) transition rates are determined for the ground state bands. The calculations reproduce the order of magnitude of the available experimental B(E2)B(E2) values without using effective charges and indicate that the first members of the ground state bands present a stronger α\alpha-cluster character. The volume integral per nucleon pair and rms radius obtained for the α+50\alpha+^{50}Ti potential are consistent with those reported previously in the analysis of α\alpha elastic scattering on 50^{50}Ti

    Coupled scalar fields Oscillons and Breathers in some Lorentz Violating Scenarios

    Get PDF
    In this work we discuss the impact of the breaking of the Lorentz symmetry on the usual oscillons, the so-called flat-top oscillons, and the breathers. Our analysis is performed by using a Lorentz violation scenario rigorously derived in the literature. We show that the Lorentz violation is responsible for the origin of a kind of deformation of the configuration, where the field configuration becomes oscillatory in a localized region near its maximum value. Furthermore, we show that the Lorentz breaking symmetry produces a displacement of the oscillon along the spatial direction, the same feature is present in the case of breathers. We also show that the effect of a Lorentz violation in the flat-top oscillon solution is responsible by the shrinking of the flat-top. Furthermore, we find analytically the outgoing radiation, this result indicates that the amplitude of the outgoing radiation is controlled by the Lorentz breaking parameter, in such away that this oscillon becomes more unstable than its symmetric counterpart, however, it still has a long living nature

    Phase space solutions in scalar-tensor cosmological models

    Full text link
    An analysis of the solutions for the field equations of generalized scalar-tensor theories of gravitation is performed through the study of the geometry of the phase space and the stability of the solutions, with special interest in the Brans-Dicke model. Particularly, we believe to be possible to find suitable forms of the Brans-Dicke parameter omega and potential V of the scalar field, using the dynamical systems approach, in such a way that they can be fitted in the present observed scenario of the Universe.Comment: revtex, 2 pages, 4 eps figures, to appear in Brazilian Journal of Physics (proceedings of the Conference 100 Years of Relativity, Sao Paulo, Brazil, August 2005

    On the study of oscillons in scalar field theories: A new approach

    Get PDF
    In this work we study configurations in one-dimensional scalar field theory, which are time-dependent, localized in space and extremely long-lived called oscillons. It is investigated how the action of changing the minimum value of the field configuration representing the oscillon affects its behavior. We find that one of the consequences of this procedure, is the appearance of a pair of oscillon-like structures presenting different amplitudes and frequencies of oscillation. We also compare our analytical results to numerical ones, showing excellent agreement
    corecore