32,240 research outputs found

    Parametric Competition in non-autonomous Hamiltonian Systems

    Full text link
    In this work we use the formalism of chord functions (\emph{i.e.} characteristic functions) to analytically solve quadratic non-autonomous Hamiltonians coupled to a reservoir composed by an infinity set of oscillators, with Gaussian initial state. We analytically obtain a solution for the characteristic function under dissipation, and therefore for the determinant of the covariance matrix and the von Neumann entropy, where the latter is the physical quantity of interest. We study in details two examples that are known to show dynamical squeezing and instability effects: the inverted harmonic oscillator and an oscillator with time dependent frequency. We show that it will appear in both cases a clear competition between instability and dissipation. If the dissipation is small when compared to the instability, the squeezing generation is dominant and one can see an increasing in the von Neumann entropy. When the dissipation is large enough, the dynamical squeezing generation in one of the quadratures is retained, thence the growth in the von Neumann entropy is contained

    Crystallization, data collection and data processing of maltose-binding protein (MalE) from the phytopathogen Xanthomonas axonopodis pv. citri

    Get PDF
    Maltose-binding protein is the periplasmic component of the ABC transporter responsible for the uptake of maltose/maltodextrins. The Xanthomonas axonopodis pv. citri maltose-binding protein MalE has been crystallized at 293 Kusing the hanging-drop vapour-diffusion method. The crystal belonged to the primitive hexagonal space group P6_122, with unit-cell parameters a = 123.59, b = 123.59, c = 304.20 Å, and contained two molecules in the asymetric unit. It diffracted to 2.24 Å resolution

    Quantum-state transfer in staggered coupled-cavity arrays

    Get PDF
    We consider a coupled-cavity array, where each cavity interacts with an atom under the rotating-wave approximation. For a staggered pattern of inter-cavity couplings, a pair of field normal modes each bi-localized at the two array ends arise. A rich structure of dynamical regimes can hence be addressed depending on which resonance condition between the atom and field modes is set. We show that this can be harnessed to carry out high-fidelity quantum-state transfer (QST) of photonic, atomic or polaritonic states. Moreover, by partitioning the array into coupled modules of smaller length, the QST time can be substantially shortened without significantly affecting the fidelity.Comment: 12 pages, 8 figure

    Constraining non-minimally coupled tachyon fields by Noether symmetry

    Full text link
    A model for a spatially flat homogeneous and isotropic Universe whose gravitational sources are a pressureless matter field and a tachyon field non-minimally coupled to the gravitational field is analyzed. Noether symmetry is used to find the expressions for the potential density and for the coupling function, and it is shown that both must be exponential functions of the tachyon field. Two cosmological solutions are investigated: (i) for the early Universe whose only source of the gravitational field is a non-minimally coupled tachyon field which behaves as an inflaton and leads to an exponential accelerated expansion and (ii) for the late Universe whose gravitational sources are a pressureless matter field and a non-minimally coupled tachyon field which plays the role of dark energy and is the responsible of the decelerated-accelerated transition period.Comment: 11 pages, 5 figures. Version accepted for publication in Classical and Quantum Gravit

    The BMV project: Search for photon oscillations into massive particles

    Full text link
    In this contribution to PSAS08 we report on the research activities developed in our Toulouse group, in the framework of the BMV project, concerning the search for photon oscillations into massive particles, such as axion-like particles in the presence of a strong transverse magnetic field. We recall our main result obtained in collaboration with LULI at \'Ecole Polytechnique (Palaiseau, France). We also present the very preliminary results obtained with the BMV experiment which is set up at LNCMP (Toulouse, France).Comment: Proceedings of PSAS'08, to be published in Can. J. Phy
    corecore