320 research outputs found

    Development of an LC-MS/MS Method for the Assessment of Selected Active Pharmaceuticals and Metabolites in Wastewaters of a Swiss University Hospital

    Get PDF
    A multi-residue analytical method was developed and validated for the quantification of 11 selected active pharmaceutical ingredients (API) and 2 human metabolites in hospital effluents using solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Targeted analytes belong to different therapeutic classes: non steroidal anti-inflammatory drugs (NSAID), analgesics, antibiotics and psychiatric drugs. Solid-phase extraction recoveries ranged between 21 and 101% for the selected API. Calibration curves were built with 6 standard samples prepared in ultrapure water ranging from 0.05 to 10 ?g/L and showed regression coefficients above 0.994. The instrumental detection limits (IDL) varied between 0.05 and 5 ?g/L, and the method detection limits (MDL) between 0.1 and 100 ng/L. Precision of the method, evaluated with spiked water samples at four different concentrations, varied between 84 and 117% for all compounds and an overall variability below 20%, with the exception of carbamazepine (71–123%). Except for two compounds, recoveries of spiked hospital wastewaters at four different concentrations (0.1, 1, 10 and 100 ?g/L) varied between 44 and 133%, with relative standard deviation (RSD) between 0.6 and 28.5%. The evaluation of the matrix effects showed that diluted samples exhibit lower signal suppression. Analysis of effluent samples from a Swiss university hospital resulted in a mean detection frequency of 92% for the selected compounds, with concentrations up to 1535 ?g/L for the analgesic paracetamol

    Rapid analysis of fluoxetine and its metabolite in plasma by LC-MS with column-switching approach

    Get PDF
    Abstract.: A rapid and sensitive method was developed for the simultaneous determination of fluoxetine and its primary metabolite, norfluoxetine, in plasma. It was based on a column-switching approach with a precolumn packed with large size particles coupled with a liquid chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS). After a simple centrifugation, plasma samples were directly injected onto the precolumn. The endogenous material was excluded thanks to a high flow rate while analytes were retained by hydrophobic interactions. Afterwards, the target compounds were eluted in back flush mode to an octadecyl analytical column and detected by ESI-MS. The overall analysis time per sample, from plasma sample preparation to data acquisition, was achieved in less than 4min. Method performances were evaluated. The method showed good linearity in the range of 25-1000ngmL−1 with a determination coefficient higher than 0.99. Limits of quantification were estimated at 25ngmL−1 for fluoxetine and norfluoxetine. Moreover, method precision was better than 6% in the studied concentration range. These results demonstrated that the method could be used to quantify target compounds. Finally, the developed assay proved to be suitable for the simultaneous analysis of fluoxetine and its metabolite in real plasma sample

    A randomised bite force study assessing two currently marketed denture adhesive products compared with no‐adhesive control

    Get PDF
    Unlike other oral care products, there are limited technologies in the denture adhesive category with the majority based on polymethyl vinyl ether/maleic anhydride (PVM/MA) polymer. Carbomer‐based denture adhesives are less well studied, and there are few clinical studies directly comparing performance of denture adhesives based on different technologies. This single‐centre, randomised, three‐treatment, three‐period, examiner‐blind, crossover study compared a carbomer‐based denture adhesive (Test adhesive) with a PVM/MA‐based adhesive (Reference adhesive) and no adhesive using incisal bite force measurements (area over baseline over 12 hr; AOB0–12) in participants with a well‐made and at least moderately well‐fitting complete maxillary denture. Eligible participants were randomised to a treatment sequence and bit on a force transducer with increasing force until their maxillary denture dislodged. This procedure was performed prior to treatment application (baseline) and at 0.5, 1, 3, 6, 9, and 12 hr following application. Forty‐four participants were included in the modified intent‐to‐treat population. AOB0–12 favoured both Test adhesive to No adhesive (difference: 2.12 lbs; 95% CI [1.25, 3.00]; p < 0.0001) and Reference adhesive to No adhesive (difference: 2.76 lbs; 95% CI [1.89, 3.63]; p < 0.0001). There was a numerical difference in AOB0–12 for Test versus Reference adhesive (−0.63 lbs; [−1.51, 0.25]); however, this was not statistically significant (p = 0.1555). Treatments were generally well tolerated. Both PVM/MA and carbomer‐based denture adhesives demonstrated statistically significantly superior denture retention compared with no adhesive over 12 hr, with no statistically significant difference between adhesives

    Efficacy of Two Cleaning Solutions for the Decontamination of 10 Antineoplastic Agents in the Biosafety Cabinets of a Hospital Pharmacy

    Get PDF
    Objective: This study aimed to evaluate two cleaning solutions for the chemical decontamination of antineoplastic agents on the surfaces of two biosafety cabinets routinely used for chemotherapy preparation in a hospital pharmacy. Methods: For almost 1 year (49 weeks), two different solutions were used for the weekly cleaning of two biosafety cabinets in a hospital pharmacy's centralized cytotoxic preparation unit. The solutions evaluated were a commercial solution of isopropyl alcohol (IPA) and water (70:30, vol:vol), and a detergent solution constituted by 10-2M of sodium dodecyl sulfate (SDS) with 20% IPA. Seven areas in each biosafety cabinet were wiped 14 times throughout the year, before and after the weekly cleaning process, according to a validated procedure. Samples were analyzed using a validated method of high-performance liquid chromatography coupled to mass spectrometry. The decontamination efficacy of these two solutions was tested for 10 antineoplastic agents: cytarabine, gemcitabine, methotrexate, etoposide phosphate, irinotecan, cyclophosphamide, ifosfamide, doxorubicin, epirubicin, and vincristine. Results: Overall decontamination efficacies observed were 82±6% and 49±11% for SDS solution and IPA, respectively. Higher contamination levels were distributed on areas frequently touched by the pharmacy technicians—such as sleeves and airlock handles—than on scale plates, gravimetric control hardware, and work benches. Detected contaminations of cyclophosphamide, ifosfamide, gemcitabine, and cytarabine were higher than those of the others agents. SDS solution was almost 20% more efficient than IPA on eight of the antineoplastic agents. Conclusion: Both cleaning solutions were able to reduce contamination levels in the biosafety cabinets. The efficacy of the solution containing an anionic detergent agent (SDS) was shown to be generally higher than that of IPA and, after the SDS cleaning procedure, biosafety cabinets demonstrated acceptable contamination level

    Wipe sampling procedure coupled to LC-MS/MS analysis for the simultaneous determination of 10 cytotoxic drugs on different surfaces

    Get PDF
    A simple wipe sampling procedure was developed for the surface contamination determination of ten cytotoxic drugs: cytarabine, gemcitabine, methotrexate, etoposide phosphate, cyclophosphamide, ifosfamide, irinotecan, doxorubicin, epirubicin and vincristine. Wiping was performed using Whatman filter paper on different surfaces such as stainless steel, polypropylene, polystyrol, glass, latex gloves, computer mouse and coated paperboard. Wiping and desorption procedures were investigated: The same solution containing 20% acetonitrile and 0.1% formic acid in water gave the best results. After ultrasonic desorption and then centrifugation, samples were analysed by a validated liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in selected reaction monitoring mode. The whole analytical strategy from wipe sampling to LC-MS/MS analysis was evaluated to determine quantitative performance. The lowest limit of quantification of 10ng per wiping sample (i.e. 0.1ngcm−2) was determined for the ten investigated cytotoxic drugs. Relative standard deviation for intermediate precision was always inferior to 20%. As recovery was dependent on the tested surface for each drug, a correction factor was determined and applied for real samples. The method was then successfully applied at the cytotoxic production unit of the Geneva University Hospitals pharmacy. Figure Wipe sampling procedure for the determination of cytotoxic drug

    Evaluation of Decontamination Efficacy of Cleaning Solutions on Stainless Steel and Glass Surfaces Contaminated by 10 Antineoplastic Agents

    Get PDF
    Objectives: The handling of antineoplastic agents results in chronic surface contamination that must be minimized and eliminated. This study was designed to assess the potential of several chemical solutions to decontaminate two types of work surfaces that were intentionally contaminated with antineoplastic drugs. Methods: A range of solutions with variable physicochemical properties such as their hydrophilic/hydrophobic balance, oxidizing power, desorption, and solubilization were tested: ultrapure water, isopropyl alcohol, acetone, sodium hypochlorite, and surfactants such as dishwashing liquid (DWL), sodium dodecyl sulfate (SDS), Tween 40, and Span 80. These solutions were tested on 10 antineoplastic drugs: cytarabine, gemcitabine, methotrexate, etoposide phosphate, irinotecan, cyclophosphamide, ifosfamide, doxorubicin, epirubicin, and vincristine. To simulate contaminated surfaces, these molecules (200ng) were deliberately spread onto two types of work surfaces: stainless steel and glass. Recovered by wiping with a specific aqueous solvent (acetonitrile/HCOOH; 20/0.1%) and an absorbent wipe (Whatman 903Âź), the residual contamination was quantified using high-performance liquid chromatography (HPLC) coupled to mass spectrometry. To compare all tested cleaning solutions, a performance value of effectiveness was determined from contamination residues of the 10 drugs. Results: Sodium hypochlorite showed the highest overall effectiveness with 98% contamination removed. Ultrapure water, isopropyl alcohol/water, and acetone were less effective with effectiveness values of 76.8, 80.7, and 40.4%, respectively. Ultrapure water was effective on most hydrophilic molecules (97.1% for cytarabine), while on the other hand, isopropyl alcohol/water (70/30, vol/vol) was effective on the least hydrophilic ones (85.2% for doxorubicin and 87.8% for epirubicin). Acetone had little effect, whatever the type of molecule. Among products containing surfactants, DWL was found effective (91.5%), but its formulation was unknown. Formulations with single surfactant non-ionics (tween 40 and span 80) or anionic (SDS) were also tested. Finally, solutions containing 10-2 M anionic surfactants and 20% isopropyl alcohol had the highest global effectiveness at around 90%. More precisely, their efficacy was the highest (94.8%) for the most hydrophilic compounds such as cytarabine and around 80.0% for anthracyclines. Finally, the addition of isopropyl alcohol to surfactant solutions enhanced their decontamination efficiency on the least hydrophilic molecules. Measured values from the stainless steel surface were similar to those from the glass one. Conclusion: This study demonstrates that all decontamination agents reduce antineoplastic contamination on work surfaces, but none removes it totally. Although very effective, sodium hypochlorite cannot be used routinely on stainless steel surfaces. Solutions containing anionic surfactant such as SDS, with a high efficiency/safety ratio, proved most promising in terms of surface decontaminatio

    Simultaneous quantification of ten cytotoxic drugs by a validated LC-ESI-MS/MS method

    Get PDF
    A liquid chromatography separation with electrospray ionisation and tandem mass spectrometry detection method was developed for the simultaneous quantification of ten commonly handled cytotoxic drugs in a hospital pharmacy. These cytotoxic drugs are cytarabine, gemcitabine, methotrexate, etoposide phosphate, cyclophosphamide, ifosfamide, irinotecan, doxorubicin, epirubicin and vincristine. The chromatographic separation was carried out by RPLC in less than 21min, applying a gradient elution of water and acetonitrile in the presence of 0.1% formic acid. MS/MS was performed on a triple quadrupole in selected reaction monitoring mode. The analytical method was validated to determine the limit of quantification (LOQ) and quantitative performance: lowest LOQs were between 0.25 and 2ngmL−1 for the ten investigated cytotoxic drugs; trueness values (i.e. recovery) were between 85% and 110%, and relative standard deviations for both repeatability and intermediate precision were always inferior to 15%. The multi-compound method was successfully applied for the quality control of pharmaceutical formulations and for analyses of spiked samples on potentially contaminated surfaces. Figure Preparation of cytotoxic formulations at the Pharmacy of Geneva University Hospital

    In situ efficacy of an experimental toothpaste on enamel rehardening and prevention of demineralisation: a randomised, controlled trial

    Get PDF
    Background A novel sodium fluoride toothpaste containing lactate ion and polyvinylmethylether-maleic anhydride has been developed to promote enamel remineralisation and resistance to demineralisation. In this in situ study, we compared this toothpaste (‘Test’) with a stannous fluoride-zinc citrate (SnF2-Zn) toothpaste (‘Reference’) (both 1100–1150 ppm fluoride) and a fluoride-free toothpaste (‘Placebo’) using an enamel dental erosion-rehardening model. Methods In each phase of this randomised, investigator-blind, crossover study, participants wore palatal appliances holding bovine enamel specimens with erosive lesions. They brushed their natural teeth with either the Test, Reference or Placebo toothpastes, then swished the resultant slurry. Specimens were removed at 2 h and 4 h post-brushing and exposed to an in vitro acid challenge. Surface microhardness was measured at each stage; enamel fluoride uptake was measured after in situ rehardening. Surface microhardness recovery, relative erosion resistance, enamel fluoride uptake and acid resistance ratio were calculated at both timepoints. Results Sixty two randomised participants completed the study. Test toothpaste treatment yielded significantly greater surface microhardness recovery, relative erosion resistance and enamel fluoride uptake values than either Reference or Placebo toothpastes after 2 and 4 h. The acid resistance ratio value for Test toothpaste was significantly greater than either of the other treatments after 2 h; after 4 h, it was significantly greater versus Placebo only. No treatment-related adverse events were reported. Conclusions In this in situ model, the novel-formulation sodium fluoride toothpaste enhanced enamel rehardening and overall protection against demineralisation compared with a fluoride-free toothpaste and a marketed SnF2-Zn toothpaste

    Cholesterol, Bile Acid, And Lipoprotein Metabolism In Two Strains Of Hamster, One Resistant, The Other Sensitive (LPN) To Sucrose-Induced Cholelithiasis

    Get PDF
    A comprehensive study of cholesterol, bile acid, and lipoprotein metabolism was undertaken in two strains of hamster that differed markedly in their response to a sucrose-rich/low fat diet. Under basal conditions, hamsters from the LPN strain differed from Janvier hamsters by a lower cholesterolemia, a higher postprandial insulinemia, a more active cholesterogenesis in both liver [3- to 4-fold higher 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMG-CoAR) activity and mRNA] and small intestine, and a lower hepatic acyl-coenzyme A:cholesterol acyltransferase activity. Cholesterol saturation indices in the gallbladder bile were similar for both strains, but the lipid concentration was 2-fold higher in LPN than in Janvier hamsters. LPN hamsters had a lower capacity to transform cholesterol into bile acids, shown by the smaller fraction of endogenous cholesterol converted into bile acids prior to fecal excretion (0.34 vs. 0.77). In LPN hamsters, the activities of cholesterol 7 -hydroxylase (C7OHase) and sterol 27-hydroxylase (S27OHase), the two rate-limiting enzymes of bile acid synthesis, were disproportionably lower (by 2-fold) to that of HMG-CoAR. When fed a sucrose-rich diet, plasma lipids increased, dietary cholesterol absorption improved, hepatic activities of HMG-CoA reductase, C7Ohase, and S27OHase were reduced, and intestinal S27OHase was inhibited in both strains. Despite a similar increase in the biliary hydrophobicity index due to the bile acid enrichment in chenodeoxycholic acid and derivatives, only LPN hamsters had an increased lithogenic index and developed cholesterol gallstones (75% incidence), whereas Janvier hamsters formed pigment gallstones (79% incidence). These studies indicate that LPN hamsters have a genetic predisposition to sucrose-induced cholesterol gallstone formation related to differences in cholesterol and bile acid metabolism
    • 

    corecore