76 research outputs found

    Differences in dietary pattern between obese and eutrophic children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive consumption of energy is a decisive factor of obesity, but a simple quantitative assessment of consumption between obese and eutrophic individuals not always explains the problem, raising questions about the importance of the qualitative aspects of food. Therefore, the purpose of this study was to evaluate the differences in nutrient composition and meal patterns between eutrophic and obese schoolchildren.</p> <p>Methods</p> <p>The diet of 83 children (42 obese and 41 eutrophic), aged between 7 and 11 years of age, was assessed by two non-consecutive dietary recalls. After the software analysis of macro and micronutrients composition, the different types and amount of legumes, fruits and vegetables were analyzed to verify the dietary patterns.</p> <p>Results</p> <p>No differences were verified in energy consumption between the groups (eutrophic = 1934.2 ± 672.7 kcal, obese = 1835.8 ± 621.2 kcal). In general, children showed consumption within the recommended ranges of carbohydrates, lipids and proteins. The average consumption of fiber was higher in the eutrophic group (20.7 g) when compared to the obese group (14.8 g). The dietary fiber was strongly correlated with the number of servings of beans (r = 0.77), when compared to fruits (r = 0.44) and leafy vegetables (r = 0.13). It was also observed that the higher the consumption of fiber and beans, the lower the proportion of dietary fat (r = -0.22) in the diet. Generally, there was a low consumption of fiber (20.7 g = eutrophic group/14.8 g = obese group), beans (1.1 portions in the eutrophic and obese groups), fruits (0.7 portions eutrophic group and 0.6 obese group) and vegetables (1.3 eutrophic group and 1.1 obese group).</p> <p>Conclusions</p> <p>It is concluded that the obesity was more related to a dietary pattern of low intake of dietary fiber than excessive energy consumption and macronutrients imbalance.</p

    Composition of unfermented, unroasted, roasted cocoa beans and cocoa shells from Peninsular Malaysia

    Get PDF
    Composition of cocoa beans depends on origin and cocoa processing such as fermentation, drying and roasting. However, less research has been conducted to analyse the composition of Peninsular Malaysia cocoa bean at different processing stages. Thus, the purpose of this study was to determine the proximate, phytosterol level, antioxidant content and activity of Peninsular Malaysia unfermented, unroasted, roasted cocoa beans and cocoa shells. Analysis involved was proximate analysis, total phenolic compound (Folin–Ciocalteu reagent assay), antioxidant activity (2,2-diphenyl-1-picrylhydrazyl scavenging assay) and phytosterol composition. Results show that the crude fiber of unroasted cocoa beans and cocoa shells increased from 17.19 to 28.45% and 13.86 to 16.06% respectively after roasting process. The roasting process is suspected to increase the dietary fiber content of cocoa products due to the interaction between polysaccharides, protein, polyphenolic and Maillard products at high temperature. The total phenolic content in cocoa bean and cocoa shells ranged from 2.42 to 10.82 µg GAE/ml. The unfermented cocoa beans contain significantly (p < 0.05) higher antioxidant activity (92.3%) compared to other samples. This study shows that cholesterol, stigmasterol and β-sitosterol were present in roasted cocoa beans and cocoa shells. Hence, the information on the composition of Malaysia unfermented, unroasted, roasted cocoa beans and cocoa shells are needed to enrich the databases composition as a reference for the cocoa industry

    Time constraints do not limit group size in arboreal guenons but do explain community size and distribution patterns

    Get PDF
    To understand how species will respond to environmental changes, it is important to know how those changes will affect the ecological stress that animals experience. Time constraints can be used as indicators of ecological stress. Here we test whether time constraints can help us understand group sizes, distribution patterns and community sizes of forest guenons (Cercopithecus/Allochrocebus). Forest guenons typically live in small to medium sized one-male multi-female groups and often live in communities with multiple forest guenon species. We developed a time-budget model using published data on time budgets, diets, body sizes, climate, and group sizes to predict maximum ecologically tolerable group and community sizes of forest guenons across 202 sub-Saharan African locations. The model correctly predicted presence/absence at 83% of these locations. Feeding-foraging time (an indicator of competition) limited group sizes, while resting and moving time constraints shaped guenon biogeography. Predicted group sizes were greater than observed group sizes but comparable to community sizes, suggesting community sizes are set by competition among guenon individuals irrespective of species. We conclude that time constraints and intra-specific competition are unlikely to be the main determinants of relatively small group sizes in forest guenons. Body mass was negatively correlated with moving time, which may give larger bodied species an advantage over smaller bodied species under future conditions when greater fragmentation of forests is likely to lead to increased moving time. Resting time heavily depended on leaf consumption and is likely to increase under future climatic conditions when leaf quality is expected to decrease
    corecore