27 research outputs found
Clinical applications of intracranial pressure monitoring in traumatic brain injury : Report of the Milan consensus conference.
A consensus conference updating the indications for invasive monitoring of intracranial pressure in patients with traumatic brain injur
Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors
We have recently shown that low intensity, intermediate frequency, electric fields inhibit by an anti-microtubule mechanism of action, cancerous cell growth in vitro. Using implanted electrodes, these fields were also shown to inhibit the growth of dermal tumors in mice. The present study extends these findings to additional cell lines [human breast carcinoma; MDA-MB-231, and human non-small-cell lung carcinoma (H1299)] and to animal tumor models (intradermal B16F1 melanoma and intracranial F-98 glioma) using external insulated electrodes. These findings led to the initiation of a pilot clinical trial of the effects of TTFields in 10 patients with recurrent glioblastoma (GBM). Median time to disease progression in these patients was 26.1 weeks and median overall survival was 62.2 weeks. These time to disease progression and OS values are more than double the reported medians of historical control patients. No device-related serious adverse events were seen after >70 months of cumulative treatment in all of the patients. The only device-related side effect seen was a mild to moderate contact dermatitis beneath the field delivering electrodes. We conclude that TTFields are a safe and effective new treatment modality which effectively slows down tumor growth in vitro, in vivo and, as demonstrated here, in human cancer patients
The effects of high stimulus rate on the electrocochleogram in normal-hearing subjects
The use of high Stimulus rates has the potential to improve the electrocochleogram's (ECochG) sensitivity and specificity in endolymphatic hydrops and Meniere's disease, but is currently hindered by the absence of an acceptable normative database. In response, this study recorded click-evoked ECochG tracings from 51 normal-hearing subjects (102 ears), between IS and 60 years of age, at 7.1, 51.1, 101.1 and 151.1 clicks/s using a tympanic membrane electrode. As stimulus rate increased, various statistically significant (
Clinical applications of intracranial pressure monitoring in traumatic brain injury : report of the Milan consensus conference.
BACKGROUND
Intracranial pressure (ICP) monitoring has been for decades a cornerstone of traumatic brain injury (TBI) management. Nevertheless, in recent years, its usefulness has been questioned in several reports. A group of neurosurgeons and neurointensivists met to openly discuss, and provide consensus on, practical applications of ICP in severe adult TBI.
METHODS
A consensus conference was held in Milan on October 5, 2013, putting together neurosurgeons and intensivists with recognized expertise in treatment of TBI. Four topics have been selected and addressed in pro-con presentations: 1) ICP indications in diffuse brain injury, 2) cerebral contusions, 3) secondary decompressive craniectomy (DC), and 4) after evacuation of intracranial traumatic hematomas. The participants were asked to elaborate on the existing published evidence (without a systematic review) and their personal clinical experience. Based on the presentations and discussions of the conference, some drafts were circulated among the attendants. After remarks and further contributions were collected, a final document was approved by the participants. The group made the following recommendations: 1) in comatose TBI patients, in case of normal computed tomography (CT) scan, there is no indication for ICP monitoring; 2) ICP monitoring is indicated in comatose TBI patients with cerebral contusions in whom the interruption of sedation to check neurological status is dangerous and when the clinical examination is not completely reliable. The probe should be positioned on the side of the larger contusion; 3) ICP monitoring is generally recommended following a secondary DC in order to assess the effectiveness of DC in terms of ICP control and guide further therapy; 4) ICP monitoring after evacuation of an acute supratentorial intracranial hematoma should be considered for salvageable patients at increased risk of intracranial hypertension with particular perioperative features
Applications of transcranial Doppler in the ICU: a review
Objective: Transcranial Doppler (TCD) ultrasonography is a technique that uses a hand-held Doppler transducer (placed on the surface of the cranial skin) to measure the velocity and pulsatility of blood flow within the intracranial and the extracranial arteries. This review critically evaluates the evidence for the use of TCD in the critical care population. Discussion: TCD has been frequently employed for the clinical evaluation of cerebral vasospasm following subarachnoid haemorrhage (SAH). To a lesser degree, TCD has also been used to evaluate cerebral autoregulatory capacity, monitor cerebral circulation during cardiopulmonary bypass and carotid endarterectomies and to diagnose brain death. Technological advances such as M mode, colour Doppler and three-dimensional power Doppler ultrasonography have extended the scope of TCD to include other non-critical care applications including assessment of cerebral emboli, functional TCD and the management of sickle cell disease. Conclusions: Despite publications suggesting concordance between TCD velocity measurements and cerebral blood flow there are few randomized controlled studies demonstrating an improved outcome with the use of TCD monitoring in neurocritical care. Newer developments in this technology include venous Doppler, functional Doppler and use of ultrasound contrast agents