12 research outputs found

    Click Chemistry with Polymers, Dendrimers, and Hydrogels for Drug Delivery

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Pharmaceutical Research. The final authenticated version is available online at: https://doi.org/10.1007/s11095-012-0683-yDuring the last decades, great efforts have been devoted to design polymers for reducing the toxicity, increasing the absorption, and improving the release profile of drugs. Advantage has been also taken from the inherent multivalency of polymers and dendrimers for the incorporation of diverse functional molecules of interest in targeting and diagnosis. In addition, polymeric hydrogels with the ability to encapsulate drugs and cells have been developed for drug delivery and tissue engineering applications. In the long road to this successful story, pharmaceutical sciences have been accompanied by parallel advances in synthetic methodologies allowing the preparation of precise polymeric materials with enhanced properties. In this context, the introduction of the click concept by Sharpless and coworkers in 2001 focusing the attention on modularity and orthogonality has greatly benefited polymer synthesis, an area where reaction efficiency and product purity are significantly challenged. The purpose of this Expert Review is to discuss the impact of click chemistry in the preparation and functionalization of polymers, dendrimers, and hydrogels of interest in drug deliveryThis work was financially supported by the Spanish Ministry of Science and Innovation (CTQ2009-10963 and CTQ2009-14146-C02-02) and the Xunta de Galicia (10CSA209021PR and CN2011/037)S

    Enhanced Bioactivity of Internally Functionalized Cationic Dendrimers with PEG Cores

    No full text
    Hybrid dendritic-linear block copolymers based on a 4-arm polyethylene glycol (PEG) core were synthesized using an accelerated AB(2)/CD(2) dendritic growth approach through orthogonal amine/epoxy and thiol-yne chemistries. The biological activity of these 4-arm and the corresponding 2-arm hybrid dendrimers revealed an enhanced, dendritic effect with an exponential increase in cell internalization concomitant with increasing amine end-groups and low cytotoxicity. Furthermore, the ability of these hybrid dendrimers to induce endosomal escape combined with their facile and efficient synthesis makes them attractive platforms for gene transfection. The 4-arm-based dendrimer showed significantly improved DNA binding and gene transfection capabilities in comparison with the 2-arm derivative. These results combined with the MD simulation indicate a significant effect of both the topology of the PEG core and the multivalency of these hybrid macromolecules, on their DNA binding and delivery capablities
    corecore