80 research outputs found

    Effect of temperature on disease severity of charcoal rot of melons caused byMacrophomina phaseolina: implications for selection of resistance sources

    Full text link
    [EN] Macrophomina phaseolinais the causal agent of charcoal rot disease of melons causing significant losses worldwide. Use of resistant cultivars is a desirable method for controlling this disease, but there is no information about the influence of temperature on the resistant behavior found in melon accessions. The purpose of the present study was to assess the effect of temperature on the reaction of six melon accessions selected previously for their resistant response toM. phaseolina. Accessions were inoculated withM. phaseolinaisolate CMM-1531 and grown under accurately controlled environmental conditions at different temperature regimes (25, 28, 31, and 34 degrees C) in a replicated experiment. The increase in temperature increased the severity of symptoms in most genotypes, but this effect was less pronounced in the highly susceptible control, the cultivar 'Piel de sapo', and in the most resistant accession, the wild AfricanagrestisAg-15591Ghana, that remained resistant even at 34 degrees C. The use of several screening temperatures allowed a better characterization of accessions that behaved similarly as highly resistant at 25 degrees C (Con-Pat81Ko, Dud-QMPAfg, Can-NYIsr and Ag-C38Nig), but in which resistance breaking was observed with temperature rises. Temperatures of 28 degrees C and 31 degrees C were sufficient to make Dud-QMPAfg, Ag-C38Nig and Can-NYIsr moderately resistant, whereas Con-Pat81Ko remained highly resistant. All these genotypes were susceptible at 34 degrees C, which suggest that are not suitable for hot-climate growing areas. The most promising accession was Ag-15591Ghana, whose resistance was confirmed in two greenhouse experiments under stressful temperatures (>34 degrees C). The behavior of these sources should be confirmed in naturally infested fields, but the controlled screening methods presented here are essential to characterize new resistance sources and to conduct genetic studies when a high number of plants must be managed under controlled environmental conditions.This work was supported by Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior CAPES (Brazil). This study was also partially supported by the Spanish Ministerio de Economia y Competitividad project AGL2014-53398-C2-2-R, by the Spanish Ministerio de Ciencia, Innovacion y Universidades project AGL2017-85563-C2-1-R and by the Conselleria d'Educacio, Investigacio, Cultura i Esports de la Generalitat Valenciana PROMETEO project para grupos de excelencia/2017/078 (cofunded with FEDER funds).Linhares, CMDS.; Ambrosio, MMQ.; Castro, G.; Barros Torres, S.; Esteras Gómez, C.; Nunes, GHDS.; Picó Sirvent, MB. (2020). Effect of temperature on disease severity of charcoal rot of melons caused byMacrophomina phaseolina: implications for selection of resistance sources. European Journal of Plant Pathology. 158(2):431-441. https://doi.org/10.1007/s10658-020-02083-wS4314411582Akhtar, K. P., Sarwar, G., & Arshad, H. M. I. (2011). Temperature response, pathogenicity, seed infection and mutant evaluation against Macrophomina phaseolina causing charcoal rot disease of sesame. Archives of Phytopathology and Plant Protection, 44(4), 320–330.Al-Mawaali, Q. S., Al-Sadi, A. M., Al-Said, F. A., & Deadman, M. L. (2013). Etiology, development and reaction of muskmelon to vine decline under arid conditions of Oman. Phytopathologia Mediterranea, 52(3), 457–465.Ambrósio, M. M. Q., Dantas, A. C. A., Martínez-Perez, E., Medeiros, A. C., Nunes, G. H. S., & Picó, M. B. (2015). Screening a variable germplasm collection of Cucumis melo L. for seedling resistance to Macrophomina phaseolina. Euphytica, 206(2), 287–300.Andrade, D. E. G. T., Michereff, S. J., Biondi, C. M., Nascimento, C. W. A., & Sales Jr., R. (2005). Frequência de fungos associados ao colapso do meloeiro e relação com características físicas, químicas e microbiológicas dos solos. Summa Phytopathologica, 31(4), 326–331.Apablaza, H. (1993). Charcoal rot of melon and watermelon (Macrophomina phaseolina (Tassi) Goidanich) in the metropolitan region of Chile. Ciencia e Investigación Agraria, 20(3), 101–105.Bakhshi, E., Safaie, N., & Shams-Bakhsh, N. (2018). Bacillus amyloliquefaciens as a biocontrol agent improves the management of charcoal root rot in melon. Journal of Agricultural Science and Technology, 20, 597–607.Bankole, S. A., Ikotun, B., & Ekpo, E. J. A. (1999). Fungal deterioration of melon seeds stored in jute sacks and polyethylene bags in ago-Iwoye, southwestern Nigeria. Mycopathologia, 146(3), 135–146.Bashir, M. R. (2017). Impact of global climate change on charcoal rot of sesame caused by Macrophomina phaseolina. Journal of Horticulture, 4, 1.Bianchini, A., Maringoni, A. C., & Carneiro, S. M. T. P. G. (2005). Doenças do feijoeiro. In H. Kimati, L. Amorim, A. Bergamin Filho, L. E. A. Camargo, & J. A. M. Rezende (Eds.), Manual de fitopatologia: Doenças das plantas cultivadas (pp. 333–349). São Paulo, Brazil: Ceres.Blanco-López, M. A., & Jiménez-Díaz, R. M. (1983). Effect of irrigation on susceptibility of sunflower to Macrophomina phaseoli. Plant Disease, 67, 1214–1217.Bruton, B. D., & Miller, M. E. (1997). Occurrence of vine decline diseases of melons in Honduras. Plant Disease, 81(6), 696–696.Bruton, B. D., & Wann, E. V. (1996). Charcoal rot. In T. A. Zitter, D. L. Hopkins, & C. E. Thomas (Eds.), Compendium of cucurbit diseases (pp. 49–50). St. Paul, USA: APS Press.Chung, B. N., Lee, J. H., Kang, B., Koh, S. W., Joa, J. H., Choi, K. S., & Ahn, J. J. (2018). HR-mediated defense response is overcome at high temperatures in Capsicum species. The Plant Pathology Journal, 34(1), 71–77.Cohen, R., Elkabetz, M., & Edelstein, M. (2016). Variation in the responses of melon and watermelon to Macrophomina phaseolina. Crop Protection, 85, 46–51.Cohen, R., Omari, N., Porat, A., & Edelstein, M. (2012). Management of Macrophomina wilt in melons using grafting or fungicide soil application: Pathological, horticultural and economical aspects. Crop Protection, 35, 58–63.Cohen, R., Tyutyunik, J., Fallik, E., Oka, Y., Tadmor, Y., & Edelstein, M. (2016). Phytopathological evaluation of exotic watermelon germplasm as a basis for rootstock breeding. Scientia Horticulturae, 165, 203–210.Dantas, A. M. M., Ambrósio, M. M. Q., Nascimento, S. R. C., Senhor, R. F., Cézar, M. A., & Lima, J. S. S. (2013). Incorporation of plant materials in the control of root pathogens in muskmelon. Revista Agro@ambiente On-line, 7(3), 338–344.Durner, E. (2019). Effective analysis of interactive effects with non-normal data using the aligned rank transform, ARTool and SAS® university edition. Horticulturae, 5, 57.Edraki, V., & Banihashemi, Z. (2010). Phenotypic diversity among isolates of Macrophomina phaseolina and its relation to pathogenicity. Iranian Journal of Plant Pathology, 46(4), 93–100.El-Kolaly, G. A. A., & Abdel-Sattar, M. A. (2013). The etiology of sudden wilt disease syndrome on melon in Egypt. Nature and Science, 11(11), 79–87.El-Sappah, A. H., Islam, M. M., El-Awady, H. H., Yan, S., Qi, S., Liu, J., et al. (2019). Tomato natural resistance genes in controlling the root-knot nematode. Genes, 10, 925.FAO. (2019). FAOSTAT: Food and Agriculture Organization Corporate Statistical Database. Available at: http://faostat3.fao.org/home/S. Accessed July 8, 2019.García-Jiménez, J., Armengol, J., Sales, R., Jordá, C., & Bruton, B. D. (2000). Fungal pathogens associated with melon collapse in Spain. EPPO Bull, 30(2), 169–173.Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate change effects on plant disease: Genomes to ecosystems. Annual Review of Phytopathology, 44, 489–509.Groenewald, J. Z., & Crous, P. W. (2014). Genetic diversity in Macrophomina phaseolina, the causal agent of charcoal rot. Phytopathologia Mediterranea, 53, 250–268.Islam, S., Haque, S., Islam, M. M., Emdad, E. M., Halim, A., Hossen, Q. M., et al. (2012). Tools to kill: Genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics, 13, 493–509.Jacob, C. J., Krarup, C., Díaz, G. A., & Latorre, B. A. (2013). A severe outbreak of charcoal rot in cantaloupe melon caused by Macrophomina phaseolina in Chile. Plant Disease, 97, 141.Machado, A. R., Pinho, D. B., Soares, D. J., Medeiros-Gomes, A. A., & Pereira, O. L. (2018). Bayesian analyses of five gene regions reveal a new phylogenetic species of Macrophomina associated with charcoal rot on oilseed crops in Brazil. European Journal of Plant Pathology, 153(1), 89–100.Manici, L. M., Caputo, F., & Cerato, C. (1995). Temperature responses of isolates of Macrophomina phaseolina from different climatic regions of sunflower production in Italy. Plant Disease, 79(8), 834–838.Marinho, R. E. M., Sales Jr., R., Maracajá, P. B., Silva, G. F., Costa, F. M., & Silva, E. C. (2002). Identificação da microflora associada a raízes de meloeiro nos estados do Rio Grande do Norte e Ceará. Revista Caatinga, 15(1), 25–28.Medeiros, A. C., Melo, D. R. M., Ambrósio, M. M. Q., Nunes, G. H. S., & Costa, J. M. (2015). Métodos de inoculação de Rhizoctonia solani e Macrophomina phaseolina em meloeiro (Cucumis melo). Summa Phytopathologica, 41(4), 281–286.Miyasaka, S. (2008). Manejo da biomassa e do solo visando à sustentabilidade da agricultura brasileira. São Paulo: Navegar.Nascimento, P. G. M. L., Ambrósio, M. M. Q., Freitas, F. C. L., Cruz, B. L. S., Dantas, A. M. M., Junior, R. S., et al. (2018). Incidence of root rot of muskmelon in different soil management practices. European Journal of Plant Pathology, 152(2), 433–446.Negreiros, A. M. P., Sales, R., Leon, M., Melo, N. J. D., Michereff, S. J., Ambrósio, M. M. D., et al. (2019). Identification and pathogenicity of Macrophomina species collected from weeds in melon fields in northeastern Brazil. Journal of Phytopathology, 167(6), 326–337.Nunes, G. H. S., Aragão, F. A. S., Nunes, E. W. L. P., Costa, J. M., & Ricarte, A. O. (2016). Melhoramento de Melão. In C. Nick & A. Borém (Eds.), Melhoramento de Hortaliças (pp. 331–363). Viçosa, Brazil: Universidade Federal de Viçosa.Pitrat, M. (2017). Melon genetic resources: Phenotypic diversity and horticultural taxonomy. In R. Grumet, N. Katzir, & J. Garcia-Mas (Eds.), Genetics and genomics of Cucurbitaceae (pp. 25–59). Cham, Switzerland: Springer Nature.Pivonia, S., Cohen, R., Kigel, J., & Katan, J. (2002). Effect of soil temperature on disease development in melon plants infected by Monosporascus cannonballus. Plant Pathology, 51(4), 472–479.Reuveni, R., Krikun, J., Nachmias, A., & Shlevin, E. (1982). The role of Macrophomina phaseolina in a collapse of melon plants in Israel. Phytoparasitica, 10(1), 51–56.Salari, M., Panjehkeh, N., Nasirpoor, Z., & Abkhoo, J. (2012). Reaction of melon (Cucumis melo L.) cultivars to soil-borne plant pathogenic fungi in Iran. African Journal of Biotechnology, 11(87), 15324–15329.Sales-Júnior, R., Oliveira, O. F., Medeiros, E. V., Guimarães, I. M., & Correia, K. C. (2012). Ervas daninhas como hospedeiras alternativas de patógenos causadores do colapso do meloeiro. Revista Ciência Agronômica, 43(1), 195–198.Sales-Júnior, R., Senhor, R. F., Michereff, S. J., & Negreiros, A. M. P. (2019). Reaction of melon genotypes to the root’s rot caused by Monosporascus. Revista Caatinga, 32(1), 288–294.Sarr, M. P., Ndiaye, M., Groenewald, J. Z., & Crous, P. W. (2014). Genetic diversity in Macrophomina phaseolina, the causal agent of charcoal rot. Phytopathologia Mediterranea, 53, 250–268.Scott, A. J., & Knott, M. A. (1974). Cluster analysis method for grouping means in the analysis of variance. Biometrics, 30(3), 507–512.Siegel, S., & Castellani Jr., N. J. (1988). Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill.Tok, F. M., Dervis, S., & Arslan, M. (2018). Host selective virulence, temperature response and genetic diversity in Macrophomina phaseolina isolates from sesame and peanut in southern Turkey. Fresenius Environmental Bulletin, 27(11), 7374–7380.USDA. (2019). United States Department of Agriculture (USDA): Fungal databases, U. S. National Fungus Collections. https://nt.ars-grin.gov/fungaldatabases/. Accessed July 10, 2019.Walker, G. E. (1994). First report of Macrophomina phaseolina associated with vine decline in muskmelon in South Australia. Plant Disease, 78(6), 640.Wobbrock, J. O., Findlater, L., Gergle, D., & Higgins, J. J. (2011). The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 143–146). New York, USA: ACM.Wosula, E. N. (2017). Effect of temperature on wheat streak mosaic disease development in winter wheat. Plant Disease, 101(2), 324–330.Zhao, L., Cai, J., He, W., & Zhang, Y. (2019). Macrophomina vaccinii sp. nov. causing blueberry stem blight in China. MycoKeys, 55, 1–14

    Multidimensional analysis of carrot-lettuce intercroppings under different combinations of population densities

    Get PDF
    Este trabalho teve como objetivo avaliar o desempenho biológico de sistemas consorciados de cenoura e alface, sob diferentes combinações de densidades populacionais, com uso das análises bivariada de variância e envoltória de dados (DEA). O delineamento experimental usado foi o de blocos ao acaso completos, com cinco repetições, com os tratamentos arranjados em esquema fatorial 4x4. Os tratamentos resultaram da combinação de quatro populações de plantas de cenoura (40, 60, 80 e 100% da população recomendada no cultivo solteiro – PRCS) com quatro populações de plantas de alface (40, 60, 80 e 100% da PRCS). As populações recomendadas para os cultivos solteiros da cenoura e alface foram 500 mil e 250 mil plantas por hectare, respectivamente. Tanto o método bivariado como o método de análise de envoltória de dados são bastante eficazes na discriminação dos melhores sistemas de cultivo consorciados, por meio dos rendimentos das culturas. Os resultados da eficiência produtiva, medidos por modelos DEA, permitem uma análise estatística simples do ensaio consorciado. A robustez do método de análise bivariada de variância assegura a validade dos resultados.The objective of this paper was to evaluate the biological performance of carrot and lettuce intercropping systems under different combinations of population densities, using the bivariate analysis of variance and data envelopment analysis (DEA). The experimental design was the randomized complete blocks, in a 4x4 factorial scheme (carrot densities: 40, 60, 80 and 100% of the recommended sole crop density (RSCD); lettuce densities: 40, 60, 80 and 100% of the RSCD), with five replications. The recommended population density for carrot in sole crop is 500 thousand plants per hectare and for lettuce in sole crop is 250 thousand plants per hectare. Both bivariate method of variance and data envelopment analysis are quite effective in discriminating the best intercropping systems as assessed through component crop yields. The results of the yield efficiency as assessed by DEA models allow a simple statistical analysis of the intercropping experiment. The robustness of the bivariate analysis of variance method assures the validity of the results

    Postharvest quality of different yellow melon hybrids stored under refrigeration

    Get PDF
    Este trabalho teve por objetivo avaliar a vida útil de cinco híbridos de melão cv. amarelo (AF-7100, AF-1498, AF-5107, AF-4945 e AF-1805) produzidos no Agropolo Assu-Mossoró-RN. Após atingido o estádio de maturação, os frutos foram colhidos e conduzidos ao Laboratório de Pós-Colheita da Universidade Federal Rural do Semiárido (UFERSA), onde se retiraram ao acaso 12 frutos de cada híbrido para caracterização no tempo zero. Em seguida, os demais frutos foram pesados, identificados e armazenados em câmara refrigerada regulada a 10±1ºC e 90±2% UR, onde permaneceram por 7; 14; 21; 28; 35; 42; 49; 56; 63 e 70 dias. Em cada intervalo de tempo, avaliaram-se nos frutos: perda de massa, firmeza da polpa, aparência externa e interna, pH, acidez titulável, sólidos solúveis, açúcares redutores e açúcares solúveis totais. o delineamento experimental foi o inteiramente casualizado, em esquema de parcelas subdivididas no tempo. Na parcela, está o fator híbridos e, na subparcela, os tempos de armazenamento. Foram utilizadas três repetições, sendo a parcela constituída por três frutos. Houve interação significativa entre híbrido e período de armazenamento para a firmeza de polpa dos frutos. Para as demais características avaliadas, foi observado o efeito dos fatores principais. Durante operíodo de conservação,ohíbridoAF-7100 apresentou maior firmeza dos frutos, seguida da cultivar AF-5107. Houve aumento na perda de massa durante o armazenamento e não se observaram danos nas aparências externas e internas até 42 e 28 dias de armazenamento, respectivamente.The objective of this work was to evaluate the shelf life of five yellow melon hybrids (AF7100, AF-1498, AF-5107, AF-4945 e AF-1805) grown in the Agropole Mossoró-Assu, RN. Fruits were harvested at commercial maturity and transported to the Postharvest Laboratory of the Universidade Federal Rural do Semi-Árido (UFERSA). Upon arrival, twelve fruits were randomly selected of each hybrid for characterization at zero time of storage. Right after, the other fruits were weighed, identified and stored in cold room at 10±1ºC and 90±2% RH for 7, 14, 21, 28, 35, 42, 49, 56, 63 and 70 days. For all these storage times, it was performed evaluations for loss of mass, pulp firmness, external and internal appearances, pH, titratable acidity, soluble solids content, reducing sugars, and total soluble sugars. The experimental design was completely randomized in subdivided parcels according to the time. The parcel has the cultivar and the subparcel has the storage periods. It was used three replications, and the parcel was constituted by three fruits. There was a significant interaction between cultivars and storage time on the pulp firmness of the fruits. It was observed significant effects of the main factors on the other assessed traits. Higher fruit pulp firmness was observed in the hybrid AF-7100, followed by the hybrid AF-5107. There was an increment in the percentage of mass loss during the storage. It was not observed any damage on the external and internal appearances until 42 and 28 days of storage, respectively.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Seleção de famílias de feijão adaptadas às condições de inverno do sul de Minas Gerais

    Get PDF
    The purpose of the present work was to select common bean families adapted to the winter conditions of South of Minas Gerais State, Brazil. 230 families were selected from segregant populations L3272 x (Carioca x TU) and L3272 x ESAL 601. They were evaluated in the winter crops in the South of Minas Gerais, and the 103 most promising ones were selected. The families selected were divided in two sets. The first, with 79 normal cycle families, and the second, with 24 precocious families, which were assessed in two locations, in 1995. The best 24 families were evaluated in the winter of 1996. The traits considered were grain yield, number of the days to flowering and reaction to Erysiphe polygoni. The results showed heterogeneity among families to all traits studied. This heterogeneity allows the selection of families adapted to the winter conditions. The genetic correlation between number of the days to flowering and reaction to Erysiphe polygoni is low and negative. The estimates of heritabilities (broad sense) are relatively high to all traits in the two sets evaluated. The heritability (broad sense) of normal cycle families is similar to realized heritability.O objetivo do trabalho foi selecionar famílias de feijão adaptadas às condições de inverno do sul de Minas Gerais. A partir das populações segregantes L3272 x (Carioca x TU) e L3272 x ESAL 601 foram selecionadas 230 famílias que foram previamente avaliadas no cultivo de inverno no sul de Minas Gerais. Foram mantidas 103 famílias, sendo 79 de ciclo normal e 24 precoces. Esses dois grupos de famílias foram avaliados independentemente, em dois locais, no inverno de 1995. As famílias selecionadas foram avaliadas em um único experimento, no inverno de 1996. Em todos os experimentos foram avaliados os caracteres produtividade de grãos, número de dias para o florescimento, e reação ao patógeno Erysiphe polygoni. Os resultados mostraram heterogeneidade entre as famílias no que tange a todos os caracteres estudados, permitindo a seleção de famílias adaptadas às condições de inverno. A correlação genética entre o número de dias para o florescimento e a reação ao patógeno Erysiphe poligoni foi baixa e negativa. As estimativas das herdabilidades no sentido amplo foram relativamente elevadas quanto a todos os caracteres, nos dois grupos de famílias avaliados. A herdabilidade no sentido amplo, referente a famílias de ciclo normal, foi semelhante à estimativa da herdabilidade realizada

    Screening a variable germplasm collection of Cucumis melo L. for seedling resistance to Macrophomina phaseolina

    Full text link
    [EN] We evaluate the seedling resistance to charcoal rot caused by Macrophomina phaseolina in ninety-seven Cucumis melo accessions, from different geographical origins and five F1 generations, derived from crosses of five accessions selected for their resistance. Artificial inoculations with the toothpick method, previously reported to be useful for predicting shoot resistance, were performed, and plants were scored using a scale of disease severity. The average disease severity was calculated for each accession and was used to cluster the accession in five reaction classes. The screening revealed that sources of natural resistance to this fungus are limited. However, seedlings of seven accessions of different botanic groups displayed a resistant response to the stem inoculation, one cantaloup from Israel, one conomon accession from Korea, two wild agrestis and one acidulus from Africa, and two dudaim accessions from Middle East. The response of the F1 progenies varied from susceptibility to high resistance, the latter in progenies from the two agrestis wild types. These results suggest differences in the genetic basis of the resistance in the different selected sources. The resistant accessions are suggested to be screened under field conditions to confirm the level of resistance at adult plant stage and under stressful conditions.This work has been partially funded by the Project No 294/13 of the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior CAPES (Brazil). M. M. Q. Ambrosio and A. C. A. Dantas thank CAPES for their research fellowships. B.Pico thanks the Programa Hispano-Brasileno de Cooperacion Universitaria HBP2012-008 and PHBP14/00021 and to the MINECO project AGL2014-53398-C2-2-R.Ambrosio, MM.; Dantas, AC.; Martinez Perez, EM.; Medeiros, AC.; Sousa Nunes, GHD.; Picó Sirvent, MB. (2015). Screening a variable germplasm collection of Cucumis melo L. for seedling resistance to Macrophomina phaseolina. Euphytica. 206(2):287-300. https://doi.org/10.1007/s10681-015-1452-xS2873002062Aegerter BJ, Gordon TR, Davis RM (2000) Occurrence and pathogenicity of fungi associated with melon root rot and vine decline in California. Plant Dis 84:224–230Almeida AMR, Abdelnoor RV, Arias CAA, Carvalho VP, Jacoud Filho DS, Marin SRR, Benato LC, Pinto MC, Carvalho CGP (2003) Genotypic diversity among Brazilian isolates of Macrophomina phaseolina revealed by RAPD. Fitopatol Bras 28:279–285Almeida AMRA, Seixas CDSS, Farias JRBF, Oliveira MCN, Franchini JC, Debiasi H, Costa JM, Gaudêncio CA (2014) Macrophomina phaseolina em soja. Embrapa Soja, Londrina, p 30pAmbrósio MMQ, Bueno CJ, Padovani CR, Souza NL (2009) Sobrevivência de fungos fitopatogênicos habitantes do solo, em microcosmo, simulando solarização com prévia incorporação de materiais orgânicos. Summa Phytopathol 35(1):20–25Andrade DEGT, Michereff SJ, Biondi CM, Nascimento CWA, Sales R Jr (2005) Frequência de fungos associados ao colapso do meloeiro e relação com características físicas, químicas e microbiológicas dos solos. Summa Phytopathol 31(4):327–333Bedendo IP (2011) Podridões de raiz e de colo. In: Amorin L, Rezende JAM, Bergamin Filho A (eds) Manual de Fitopatologia: Princípios e conceitos. Agronômica Ceres, São Paulo, pp 443–448Bramel-Cox PJ, Stein IS, Rodgers DM, Claflin LE (1988) Inheritance of resistance to Macrophomina phaseolina (Tassi) Goid. and Fusarium moniliforme Sheldom in Sorghum. Crop Sci 28(1):37–40Bruton BD, Miller E (1997) Occurrence of vine decline diseases of melons in Honduras. Plant Dis 81(6):696Bruton BD, Jeger MD, Reuveni R (1987) Macrophomina phaseolina infection and vine decline in cantaloupe in relation to planting date, soil environment, and maturation. Plant Dis 71(3):259–263Burger Y, Katzir N, Tzuri G, Portnoy V, Saar U, Shriber S, Perl-Treves R, Cohen R (2003) Variation in the response of melon genotypes to Fusarium oxysporum f. sp. melonis race 1 determined by inoculation tests and molecular markers. Plant Pathol 52:204–211Chamorro M, Miranda L, Domínguez P, Medina JJ, Soria C, Romero F, López Aranda JM, De los Santos B (2015) Evaluation of biosolarization for the control of charcoal rot disease (Macrophomina phaseolina) in strawberry. Crop Prot 67:279–286Cohen R (1993) A leaf disk assay for detection of resistance of melons to Sphaerotheca fuliginea race 1. Plant Dis 77(5):513–517Cohen R, Katzir N, Schreiber S, Greenberg R (1996) Occurrence of Shaerotheca fuliginea Race 3 on Cucurbits in Israel. Plant Dis 80:334Cohen R, Omari N, Porat A, Edelstein M (2012) Management of Macrophomina wilt in melons using grafting or fungicide soil application: pathological, horticultural and economical aspects. Crop Prot 35:58–63Cohen R, Tyutyunik J, Fallik E, Oka Y, Tadmor Y, Edelstein M (2014) Phytopathological evaluation of exotic watermelon germplasm as a basic for rootstock breeding. Sci Hortic 165:203–210Dantas AMM, Ambrósio MMQ, Nascimento SRC, Senhor RF, Cézar MA, Lima JSS (2013) Incorporation of plant materials in the control of root pathogens in mushmelon. Revista Agro@ambiente on-line 7(3):338–344Davis RM, Turini TA, Aegerter BJ, Stapleton JJ (2009) Cucurbits charcoal rot, pathogen: Macrophomina phaseolina. UC IPM online. http://www.totoagriculture.org/PDFs/PlantDiseasesPests/1026.pdf . Accessed 25 Feb 2015Dias RCS, Picó B, Espinos A, Nuez F (2004) Resistance to melón vine decline derived from Cucumis melo ssp. agrestis: genetic analysis of root structure and root response. Plant Breed 123:66–72Diourte M, Starr JL, Jegger MJ, Stack JP, Rosenow DT (1995) Charcoal rot (Macrophomina phaseolina) resistance and the effect of water stress on disease development in Sorghum. Plant Pathol 44:196–202Esteras C, Pascual B, Nuez F, Picó MB (2009) Use of ecotilling to identify natural allelic variants of melon candidate genes involved in fuit ripening. 8th Plant Genomics European Meeting (Plant GEM 8) Istambul, 213Esteras C, Formisano G, Roig C, Díaz A, Blanca J, Garcia-Mas J, Gómez-Guillamón ML, López-Sesé AI, Lázaro A, Monforte AJ, Picó B (2013) SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet 126(5):1285–1303. doi: 10.1007/s00122-013-2053-5Fang X, Phillips D, Li H, Sivasithamparama K, Barbettia MJ (2011) Comparisons of virulence of pathogens associated with crown and root diseases of strawberry in Western Australia with special reference to the effect of temperature. Sci Hortic 131(22):39–48Food and Agriculture Organization (2014) Faostat. http://faostat.fao.org/site/567/default.aspx#ancor . Accessed 11 Nov 2011García-Jiménez J, Martínez-Ferrer G, Armengol J, Velazquez MT, Orts M, Juárez M, Ortega A, Jordá MC, Alfaro A (1993) Agentes asociados al colapso del melón en distintas zonas españolas. Bol San Veg Plagas 19:401–423Grezes-Besset B, Lucante N, Kelechian V, Dargent R, Muller H (1996) Evaluation of castor bean resistance to sclerotial wilt disease caused by Macrophomina phaseolina. Plant Dis 80(8):842–846Hutcheson SW (1998) Current concepts of active defense in plants. Annu Rev Phytopathol 36:59–90Iglesias A, Picó B, Nuez F (2000) A temporal genetic analysis of disease resistance genes resistance to melon vine decline derived from Cucumis melo var. agrestis. Plant Breed 119:329–334Islam MS, Haque MS, Islam MM, Emdad EM, Halim A, Hossen QMM, Hossain MZ, Ahmed B, Rahim S, Rahman MS, Alam MM, Hou S, Wan X, Saito JÁ, Alam M (2012) Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomic 13(493):1–16Jacob CJ, Krarup C, Díaz A, Latorre BA (2013) A severe outbreak of charcoal rot in cantaloupe melon caused by Macrophomina phaseolina in Chile. Plant Dis 97(1):141Kaur S, Dhillon GS, Brar SK, Vallad GE, Chand R, Chauhan VB (2012) Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends. Crit Rev Microbiol 38(1):136–151Keeling A (1982) Seedling test for resistance to soybean stem canker caused by diaporthe phaseolorum var. caulivora. Phytopathology 72(7):807–809Khan SN (2007) Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopath 5(2):111–118Khan SH, Shuaib M (2007) Identification of sources of resistance in Mung bean (Vigna radiata L.) against Charcoal Rot Macrophomina phaseolina (Tassi) Goid. Afr Crop Sci 8:2101–2102Krikun J, Orion D, Nachmias A, Reuveni R (1982) The role of soilborne pathogens under conditions of intensive agricultura. Phytoparasitica 10(4):247–258Mahmoudi SB, Ghashghaie S (2013) Reaction of sugar beet S1 lines and cultivars to different isolates of Macrophomina phaseolina and Rhizoctonia solani AG-2-2IIIB. Euphytica 190:39–445. doi: 10.1007/s10681-012-0832-8Mertely J, Seijo T, Peres N (2005) First report of Macrophomina phaseolina causing a crown rot of strawberry in Florida. Plant Dis 89(4):434Mughogho LK, Pande S (1984) Charcoal Rot of Sorghum. In: Mughogho LK, Rosenberg G (eds) Sorghum root and stalk rots, a critical review: proceedings of the consultative group discussion on research needs and strategies for control of sorghum root and stalk rot diseases. Icrisat, Bellagio, pp 11–24Nischwitz C, Olsen M, Rasmussen S (2004) Effect of irrigation type on inoculum density of Macrophomina phaseolina in melon fields in Arizona. J Phytopathol 152(3):133–137Noling JW, Becker JO (1994) The challenge of research and extension to define and implement alternatives to methyl bromide. J Nematol 26(4S):573–586Pitrat M (2008) Melon. In: Prohens J, Nuez F (eds) Handbook of plant breeding. Springer, New York, pp 283–315Purkayastha S, Kaur B, Dilbaghi N, Chaudhury A (2006) Characterization of Macrophomina phaseolina, the charcoal rot pathogen of cluster bean, using conventional techniques and PCR-based molecular markers. Plant Pathol 55:106–116. doi: 10.1111/j.1365-3059.2005.01317.xRadwan O, Rouhana LV, Hartman GL, Korban SS (2014) Genetic mechanisms of host-pathogen interactions for charcoal rot in soybean. Plant Mol Biol Report 32(3):617–629Ravf BA, Ahmad I (1998) Studies on correlation of seed infection to field incidence of Alternaria alternate and Macrophomina phaseolina in Sunflower. 13th Iranian Plant Protection Congress-Karaj, p 113Roustaee A, Reyhan MK, Jafari M (2011) Study of interaction between salinity and charcoal rot diseases of melon (Macrophomina phaseolina) in Semnan and Garmsar. Desert 16(2):175–218Salari M, Panjehkeh N, Nasirpoor Z, Abkhoo J (2012) Reaction of melón (Cucumis melo L.) cultivars to soil-borne plant pathogenic fungi in Iran. Afr J Biotecnol 11(87):15324–15329Sales R Jr, Oliveira OF, Medeiros EV, Guimarães IM, Correia KC, Michereff SJ (2012) Ervas daninhas como hospedeiras alternativas de patógenos causadores do colapso do meloeiro. Rev Ciênc Agron 43(1):195–198Sas Institute (2000) Sas/Stat user´s guide: statistics, version 8.01, v. 2, 4. SAS Institute, Inc, CaryScandiani MM, Ruberti DS, Giorda LM, Pioli RN, Luque AG, Bottai H, Ivancovich JJ, Aoki T, O´Donnell K (2011) Comparison of inoculation methods for characterizing relative aggressiveness of two soybean sudden-death syndrome pathogens, Fusarium virguliforme and F. tucumaniae. Trop Plant Pathol 36(3):133–140Scott AJ, Knott MA (1974) Cluster analysis method for grouping means in the analysis of variance. Biometrics 30(3):507–512Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci 107:14269–14273Sharmishtha P, Bhavneet K, Neeraj D, Ashok C (2006) Evaluation of cluster bean genotypes for resistance to charcoal rot caused by Macrophomina phaseolina using different host inoculation methods pages. J Crop Improv 15(1):67–79Shekhar M, Sharma RC, Singh L, Dutta R (2006) Morphological and pathogenic variability of Macrophomina phaseolina (Tassi.) Goid Incitant of charcoal rot of maize in India. Indian Phytopath 59(3):294–298Stapleton JJ (2000) Soil solarization in various agricultural production systems. Crop Prot 19:837–841Twizeyimana M, Hill CB, Pawlowski M, Paul C, Hartman GL (2012) A cut-stem inoculation technique to evaluate soybean for resistance to Macrophomina phaseolina. Plant Dis 96(8):1210–1215Watson A, Napier T (2009) Disease of cucurbit vegetables. Primefact 832:1–6Wolukau JN, Zhou XH, Li Y, Zhang Y, Chen J (2007) Resistance to gummy stem blight in melon (Cucumis melo L.) germplasm and inheritance of resistance from plant introductions 157076, 420145, and 323498. HortScience 42(2):215–221Wrather JA, Anderson TR, Arsyad DM, Tan Y, Ploper LD, Porta-Puglia A, Ram HH, Yorinori JT (2001) Soybean disease loss estimates for the top ten soybean-producing countries in 1998. Can J Plant Pathol 23:115–12

    Interference of genotype-by-environment interaction in the selection of inbred lines of yellow melon in an agricultural center in Mossoró-Assu, Brazil

    Get PDF
    ABSTRACT. The aims of this study were to i) identify the influence of the GxE interaction in the selection of inbred lines of melon, and ii) test the efficiency of different indexes in the selection of inbred lines with a higher yield potential and better quality fruit. For these purposes, 98 inbred lines of yellow melon and two commercial controls, Vereda and AF-646, were evaluated in a randomized block design with two replications, at the conditions present in Mossoró and Baraúna. Analyses of the following traits were performed: fruit yield, mean fruit weight, pulp thickness, pulp firmness and soluble solids content. A complex portion of the GxE interaction was predominantly detected for all traits. The recommendation in this case is to promote selection in each environment. Alternatively, selection based on the average behavior of the inbred lines is the strategy that generates the greatest gains, approaching those obtained through direct selection in each specific environment. The selection indexes aimed at reducing the expression of all traits proved to be best for both locations. The index constructed for Baraúna allowed the selection of a greater number of inbred lines with a higher yield potential and better quality fruit and, thus, greater efficiency. Keywords: Cucumis melo L, segregant populations, genetic gains, inbred lines extraction, hybrids, selection indexes. Interferência da interação genótipo por ambiente na seleção de linhagens de melão amarelo no agropolo Mossoró-Assu, Brasil RESUMO. Objetivou-se com esse estudo: i) identificar a interferência da interação GxE no processo de seleção de linhagens de melão e; ii) testar a eficiência de índices na seleção de linhagens com maior potencial produtivo e melhor qualidade de fruto. Para isto, avaliaram-se 98 linhagens de melão amarelo e duas testemunhas, Vereda e AF-646, em blocos casualizados com duas repetições, em Mossoró e Baraúna, localizadas no Agropolo produtor desta hortaliça. Avaliaram-se os caracteres produtividade de frutos, massa média de frutos, espessura de polpa, firmeza de polpa e sólidos solúveis. Detectou-se uma predominância da porção complexa na interação GxE em todos os caracteres. A recomendação, neste caso, é promover a seleção em cada ambiente. Alternativamente, a seleção baseada no comportamento médio das linhagens é a estratégia que gera ganhos mais próximos àqueles obtidos pela seleção direta em cada ambiente específico. Os índices de seleção, com o propósito de reduzir a expressão de todos os caracteres, se mostraram melhores para ambas as localidades. Àquele construído para Baraúna permitiu selecionar um maior número de linhagens com elevado potencial produtivo e com melhores qualidades de fruto, sendo assim, mais eficiente. Palavras-chave: Cucumis melo L, populações segregantes, ganho genético, extração de linhagens, híbridos, índices de seleção

    Herança do teor de betacaroteno em melão

    Get PDF
    The objective of this work was to determine the inheritance of beta‑carotene content in melon (Cucumis melo). The AC-16 accession (Cucumis melo subsp. melo var. acidulus) – with a low beta-carotene content and white mesocarp – was crossed with the Vedrantais cultivar (C. melo subsp. melo var. cantalupensis) – with a high beta-carotene content and salmon colored mesocarp –, to obtain the F1, F2, BC1 and BC2 generations. The AC‑16 and 'Vedrantais' parents, the F1 and F2 generations, and the BC1 and BC2 backcrosses of each parent were evaluated. The quantification of beta‑carotene was carried out in a high-performance liquid chromatography system. Mean components related to the additive and dominance effects, additive and dominance variances, and heritability were estimated. The beta‑carotene content was high in 'Vedrantais' (17.78 µg g-1) and low in AC-16 (0.34 µg g-1). The following results were observed: additive and dominance effects on the genetic control of the character, incomplete character dominance, estimated number of loci close to two, greater variance for segregating populations (F2 and backcrosses), and heritability values in the broad (87.75%) and narrow (64.19%) senses. The beta-carotene content in melon is controlled by a major effect gene, with additive and dominance effects associated with polygenes with additive effects.O objetivo deste trabalho foi determinar a herança do teor de betacaroteno em melão (Cucumis melo). O acesso AC-16 (Cucumis melo subsp. melo var. acidulus) – com baixo teor de betacaroteno e mesocarpo branco – foi cruzado com a cultivar Vedrantais (C. melo subsp. melo var. cantalupensis) – com alto teor de betacaroteno e mesocarpo de cor salmão –, para obtenção das gerações F1, F2, RC1 e RC2. Avaliaram-se os genitores AC‑16 e 'Vedrantais', as gerações F1 e F2, e os retrocruzamentos de cada genitor RC1 e  RC2. A quantificação do betacaroteno foi realizada em sistema de cromatografia líquida de alto desempenho. Foram estimados os componentes de média relacionados aos efeitos aditivos e de dominância, as variâncias aditiva e de dominância e a herdabilidade. O teor de betacaroteno foi alto (17,78 µg g-1) em 'Vedrantais' e baixo em AC-16 (0,34 µg g-1). Observaram-se os seguintes resultados: efeito aditivo e de dominância no controle genético do caráter, dominância de caráter incompleta, número estimado de loci próximo de dois, maior variância para populações segregantes (F2 e retrocruzamentos), e valores de herdabilidade nos sentidos amplo (87,75%) e restrito (64,19%). O teor de betacaroteno em melão é controlado por um gene de efeito maior, com efeitos aditivos e de dominância associados a poligenes com efeitos aditivos

    Cantaloupe melon (Cucumis melo L.) conservation using hydrocooling Rev

    Get PDF
    ABSTRACT RESUMO Cantaloupe melon (Cucumis melo L.) conservation using hydrocooling Maintaining cantaloupe melon at field temperature impairs conservation as it speeds up cell metabolism and transpiration, and, consequently, reduces shelf life. This study aimed to evaluate the conservation of Torreon hybrid cantaloupe using the hydrocooling treatment. Fruits were harvested at the commercial maturity stage (60 days after planting), in the morning, at the Nova California Farm, municipality of Mossoró-RN, in September 2007. One set of fruit was immersed in chilled water at 5 ºC for 5 min, at the packing house, while the remaining set was not hydro cooled. Then, both sets (treated and untreated with hydrocooling) were pre-cooled in air forced tunnels at 7 ºC, until the temperature in the pulp reached 10 ºC. Both fruit sets were stored for 0, 14, 21, 28 and 35 days under modified atmosphere at 3 ± 1 o C and 90 ± 5% RH. After each storage period, the fruits were incubated in an atmosphere-controlled chamber at 20 ± 2 o C and 80 ± 5% de RH, for seven days. The following characteristics were evaluated: external and internal appearance, mass loss, soluble solids, firmness and titrable acidity. The experiment was arranged in a completely randomized split-plot design with four replications of three fruits. The plots consisted of the hydrocooling conditions (with and without fruit soaking in chilled water), and the sub-plots consisted of the storage times (0, 14, 21, 28 and 35 days).The treatment with hydrocooling was efficient in keeping the firmness and soluble solids of the fruits and shortened the pre-cooling time in the cooling tunnel. However, hydrocooling did not increase fruit shelf-life. Conservação de melão Cantaloupe (Cucumis melo L.) com o uso de hidrorresfriamento A manutenção da temperatura de campo dos frutos é prejudicial à sua conservação, porque acelera o metabolismo celular e a transpiração e, como consequência, reduz sua vida útil. Este trabalho teve por objetivo avaliar a conservação do melão Cantaloupe, híbrido 'Torreon', com o uso de hidrorresfriamento. Os frutos foram colhidos em setembro de 2007, pela manhã, na Fazenda Nova Califórnia, localizada no município de Mossoró-RN, na maturidade comercial (60 dias após a semeadura). Na casa de embalagem da fazenda, um grupo de frutos foi pré-resfriado (imersão em água fria, a 5 ºC, por 5 min.), enquanto o outro grupo permaneceu sem resfriar. Logo após, os dois grupos foram submetidos a um pré-resfriamento em túneis de circulação forçada de ar, à temperatura de 7 ºC, até que a polpa atingisse 10 ºC. Ambos foram armazenados por 0, 14, 21, 28 e 35 dias, sob atmosfera modificada, a 3 ± 1 o C e 90 ± 5% de UR. Após cada intervalo de tempo, os frutos foram transferidos para uma câmara regulada a 20 ± 2 o C e 80 ± 5% de UR, em que permaneceram po

    Indirect selection for content of carotenoid in pumpkin accessions

    Get PDF
    Carotenoid quantification in foods can be performed by various techniques, such as spectrophotometry, mass spectrometry, high performance liquid chromatography, gas chromatography and colorimetry. The objective of this study was to verify the feasibility of indirect selection of total carotenoids in pumpkin accessions. The experimental design was in complete randomized blocks with two replications and three plants per plot. The treatments consisted of 51 Cucubita moschata Duch accessions from the DCAF/UFERSA Cucurbitaceae germplasm collection and a commercial C. maxima Duch cultivar. After maturation, the fruits were harvested and colorimetric and total carotenoid contents were evaluated. Pulp color intensity parameters and hº angle indicated the possibility of indirect selection of accessions with higher total carotenoid contents. The ABO22 access presented higher total carotenoid content under the evaluation conditions of the experiment. Highlights There is variability in the total carotenoid content in pumpkin accessions. The pumpkin accessions studied have potential for food biofortification. Feasibility of indirect selection in pumpkin accessions for high total carotenoid content.Carotenoid quantification in foods can be performed by various techniques, such as spectrophotometry, mass spectrometry, high performance liquid chromatography, gas chromatography and colorimetry. The objective of this study was to verify the feasibility of indirect selection of total carotenoids in pumpkin accessions. The experimental design was in complete randomized blocks with two replications and three plants per plot. The treatments consisted of 51 Cucubita moschata Duch accessions from the DCAF/UFERSA Cucurbitaceae germplasm collection and a commercial C. maxima Duch cultivar. After maturation, the fruits were harvested and colorimetric and total carotenoid contents were evaluated. Pulp color intensity parameters and hº angle indicated the possibility of indirect selection of accessions with higher total carotenoid contents. The ABO22 access presented higher total carotenoid content under the evaluation conditions of the experiment. Highlights There is variability in the total carotenoid content in pumpkin accessions. The pumpkin accessions studied have potential for food biofortification. Feasibility of indirect selection in pumpkin accessions for high total carotenoid content
    corecore