39 research outputs found

    Delay of neuropathic pain sensitization after application of dexamethasone-loaded implant in sciatic nerve-injured rats

    Get PDF
    Neuroimmune interactions underlying the development of pain sensitization in models of neuropathic pain have been widely studied. In this study, we evaluated the development of allodynia and its reduction associated with peripheral antineuroinflammatory effects induced by a dexamethasone-loaded biodegradable implant. Chronic constriction injury (CCI) of the sciatic nerve was performed in Wistar rats. The electronic von Frey test was applied to assess mechanical allodynia. The dexamethasone-loaded implant was placed perineurally at the moment of CCI or 12 days after surgery. Dorsal root ganglia (DRG; L4-L5) were harvested and nuclear extracts were assayed by Western blot for detection of nuclear factor (NF)-κB p65/RelA translocation. Dexamethasone delivered from the implant delayed the development of allodynia for approximately three weeks in CCI rats when the implantation was performed at day 0, but allodynia was not reversed when the implantation was performed at day 12. NF-κB was activated in CCI rat DRG compared with naïve or sham animals (day 15), and dexamethasone implant inhibited p65/ RelA translocation in CCI rats compared with control. This study demonstrated that the dexamethasoneloaded implant suppresses allodynia development and peripheral neuroinflammation. This device can reduce the potential side effects associated with oral anti-inflammatory drugs

    Eosinophil-Associated Innate IL-17 Response Promotes Aspergillus fumigatus Lung Pathology

    Get PDF
    Aspergillus fumigatus is a common widespread microorganism with environmental, biological and clinical relevance. After inhalation, swollen conidia can germinate, colonize and invade pulmonary tissues. Eosinophils have been described as key cells in A. fumigatus lung infection. However, their specific role in protecting or damaging lung tissue as well as their relatioship among different A. fumigatus strains is poorly understood. Previously, it has been reported that eosinophils are able to produce IL-17 and mediate an innate response that protected mice from infection using Af293 and CEA10 strains. Here, we have developed a set of new experiments with the CEA17-derived A1163 strain of A. fumigatus. Using ΔdblGATA1 mice, we demonstrate that eosinophils produce IL-17 and are involved in control of neutrophil, macrophage and lymphocyte recruitment. We found that eosinophils also induce high levels of cytokines and chemokines, generating an intense inflammatory process. Eosinophils are responsible for increased pulmonary dysfunction and elevated lethality rates in mice. Curiously, fungal burden was not affected. To address the role of IL-17 signaling, pharmacological inhibition of this mediator in the airways with anti-IL-17 antibody was able to reduce inflammation in the airways and protect infected mice. In conclusion, our results demonstrate that eosinophils control IL-17-mediated response and contribute to lung pathology after A. fumigatus infection. Therefore, eosinophils may represent a potential target for controlling exacerbated inflammation and prevent tissue damage during this fungal infection

    Induction of Eosinophil Apoptosis by the Cyclin-Dependent Kinase Inhibitor AT7519 Promotes the Resolution of Eosinophil-Dominant Allergic Inflammation

    Get PDF
    Eosinophils not only defend the body against parasitic infection but are also involved in pathological inflammatory allergic diseases such as asthma, allergic rhinitis and contact dermatitis. Clearance of apoptotic eosinophils by macrophages is a key process responsible for driving the resolution of eosinophilic inflammation and can be defective in allergic diseases. However, enhanced resolution of eosinophilic inflammation by deliberate induction of eosinophil apoptosis using pharmacological agents has not been previously demonstrated. Here we investigated the effect of a novel cyclin-dependent kinase inhibitor drug, AT7519, on human and mouse eosinophil apoptosis and examined whether it could enhance the resolution of a murine model of eosinophil-dominant inflammation in vivo.Eosinophils from blood of healthy donors were treated with AT7519 and apoptosis assessed morphologically and by flow-cytometric detection of annexin-V/propidium iodide staining. AT7519 induced eosinophil apoptosis in a concentration dependent manner. Therapeutic administration of AT7519 in eosinophil-dominant allergic inflammation was investigated using an established ovalbumin-sensitised mouse model of allergic pleurisy. Following ovalbumin challenge AT7519 was administered systemically at the peak of pleural inflammation and inflammatory cell infiltrate, apoptosis and evidence of macrophage phagocytosis of apoptotic eosinophils assessed at appropriate time points. Administration of AT7519 dramatically enhanced the resolution of allergic pleurisy via direct induction of eosinophil apoptosis without detriment to macrophage clearance of these cells. This enhanced resolution of inflammation was shown to be caspase-dependent as the effects of AT7519 were reduced by treatment with a broad spectrum caspase inhibitor (z-vad-fmk).Our data show that AT7519 induces human eosinophil apoptosis and enhances the resolution of a murine model of allergic pleurisy by inducing caspase-dependent eosinophil apoptosis and enhancing macrophage ingestion of apoptotic eosinophils. These findings demonstrate the utility of cyclin-dependent kinase inhibitors such as AT7519 as potential therapeutic agents for the treatment of eosinophil dominant allergic disorders

    Annexin A1 and the Resolution of Inflammation: Modulation of Neutrophil Recruitment, Apoptosis, and Clearance

    No full text
    Neutrophils (also named polymorphonuclear leukocytes or PMN) are essential components of the immune system, rapidly recruited to sites of inflammation, providing the first line of defense against invading pathogens. Since neutrophils can also cause tissue damage, their fine-tuned regulation at the inflammatory site is required for proper resolution of inflammation. Annexin A1 (AnxA1), also known as lipocortin-1, is an endogenous glucocorticoid-regulated protein, which is able to counterregulate the inflammatory events restoring homeostasis. AnxA1 and its mimetic peptides inhibit neutrophil tissue accumulation by reducing leukocyte infiltration and activating neutrophil apoptosis. AnxA1 also promotes monocyte recruitment and clearance of apoptotic leukocytes by macrophages. More recently, some evidence has suggested the ability of AnxA1 to induce macrophage reprogramming toward a resolving phenotype, resulting in reduced production of proinflammatory cytokines and increased release of immunosuppressive and proresolving molecules. The combination of these mechanisms results in an effective resolution of inflammation, pointing to AnxA1 as a promising tool for the development of new therapeutic strategies to treat inflammatory diseases

    Alzheimer’s disease and cytokine IL-10 gene polymorphisms: is there an association?

    No full text
    ABSTRACT Alzheimer’s disease (AD) is the most common form of dementia. In the last 15 years, a new theory has proposed the autoimmune mechanism as a trigger for AD. Studies on the association between AD and inflammatory biomarkers have yielded controversial results. Interleukin-10 (IL-10), an anti-inflammatory mediator, has been pointed out as one of the main cytokines associated with the occurrence of AD. Moreover, treatment that increases IL-10 levels could be a potential therapy for AD, since this cytokine acts on amyloid and pro-inflammatory molecule reduction. Based on the current literature, this study reviews evidence regarding the role of IL-10 polymorphisms in the context of AD, which has been shown to be of paramount importance for attenuating neuroinflammation, cognitive dysfunction and neurodegeneration

    Switching Off Key Signaling Survival Molecules to Switch On the Resolution of Inflammation

    No full text
    Inflammation is a physiological response of the immune system to injury or infection but may become chronic. In general, inflammation is self-limiting and resolves by activating a termination program named resolution of inflammation. It has been argued that unresolved inflammation may be the basis of a variety of chronic inflammatory diseases. Resolution of inflammation is an active process that is fine-tuned by the production of proresolving mediators and the shutdown of intracellular signaling molecules associated with cytokine production and leukocyte survival. Apoptosis of leukocytes (especially granulocytes) is a key element in the resolution of inflammation and several signaling molecules are thought to be involved in this process. Here, we explore key signaling molecules and some mediators that are crucial regulators of leukocyte survival in vivo and that may be targeted for therapeutic purposes in the context of chronic inflammatory diseases

    Distinct Macrophage Fates after <i>in vitro</i> Infection with Different Species of <i>Leishmania</i>: Induction of Apoptosis by <i>Leishmania (Leishmania) amazonensis</i>, but Not by <i>Leishmania (Viannia) guyanensis</i>

    No full text
    <div><p><i>Leishmania</i> is an intracellular parasite in vertebrate hosts, including man. During infection, amastigotes replicate inside macrophages and are transmitted to healthy cells, leading to amplification of the infection. Although transfer of amastigotes from infected to healthy cells is a crucial step that may shape the outcome of the infection, it is not fully understood. Here we compare <i>L</i>. <i>amazonensis</i> and <i>L</i>. <i>guyanensis</i> infection in C57BL/6 and BALB/c mice and investigate the fate of macrophages when infected with these species of <i>Leishmania in vitro</i>. As previously shown, infection of mice results in distinct outcomes: <i>L</i>. <i>amazonensis</i> causes a chronic infection in both strains of mice (although milder in C57BL/6), whereas <i>L</i>. <i>guyanensis</i> does not cause them disease. <i>In vitro</i>, infection is persistent in <i>L</i>. <i>amazonensis</i>-infected macrophages whereas <i>L</i>. <i>guyanensis</i> growth is controlled by host cells from both strains of mice. We demonstrate that, <i>in vitro</i>, <i>L</i>. <i>amazonensis</i> induces apoptosis of both C57BL/6 and BALB/c macrophages, characterized by PS exposure, DNA cleavage into nucleosomal size fragments, and consequent hypodiploidy. None of these signs were seen in macrophages infected with <i>L</i>. <i>guyanensis</i>, which seem to die through necrosis, as indicated by increased PI-, but not Annexin V-, positive cells. <i>L</i>. <i>amazonensis</i>-induced macrophage apoptosis was associated to activation of caspases-3, -8 and -9 in both strains of mice. Considering these two species of <i>Leishmania</i> and strains of mice, macrophage apoptosis, induced at the initial moments of infection, correlates with chronic infection, regardless of its severity. We present evidence suggestive that macrophages phagocytize <i>L</i>. <i>amazonensis</i>-infected cells, which has not been verified so far. The ingestion of apoptotic infected macrophages by healthy macrophages could be a way of amastigote spreading, leading to the establishment of infection.</p></div

    Phosphatidylinositol 3-Kinase γ Is Required for the Development of Experimental Cerebral Malaria

    No full text
    <div><p>Experimental cerebral malaria (ECM) is characterized by a strong immune response, with leukocyte recruitment, blood-brain barrier breakdown and hemorrhage in the central nervous system. Phosphatidylinositol 3-kinase γ (PI3Kγ) is central in signaling diverse cellular functions. Using PI3Kγ-deficient mice (PI3Kγ<sup>-/-</sup>) and a specific PI3Kγ inhibitor, we investigated the relevance of PI3Kγ for the outcome and the neuroinflammatory process triggered by <i>Plasmodium berghei</i> ANKA (PbA) infection. Infected PI3Kγ<sup>-/-</sup> mice had greater survival despite similar parasitemia levels in comparison with infected wild type mice. Histopathological analysis demonstrated reduced hemorrhage, leukocyte accumulation and vascular obstruction in the brain of infected PI3Kγ<sup>-/-</sup> mice. PI3Kγ deficiency also presented lower microglial activation (Iba-1+ reactive microglia) and T cell cytotoxicity (Granzyme B expression) in the brain. Additionally, on day 6 post-infection, CD3<sup>+</sup>CD8<sup>+</sup> T cells were significantly reduced in the brain of infected PI3Kγ<sup>-/-</sup> mice when compared to infected wild type mice. Furthermore, expression of CD44 in CD8+ T cell population in the brain tissue and levels of phospho-IkB-α in the whole brain were also markedly lower in infected PI3Kγ<sup>-/-</sup> mice when compared with infected wild type mice. Finally, AS605240, a specific PI3Kγ inhibitor, significantly delayed lethality in infected wild type mice. In brief, our results indicate a pivotal role for PI3Kγ in the pathogenesis of ECM.</p></div
    corecore