119 research outputs found

    Comparative analysis of carbon monoxide tolerance among Thermoanaerobacter species

    Get PDF
    An anaerobic thermophilic strain (strain PCO) was isolated from a syngas-converting enrichment culture. Syngas components cannot be used by strain PCO, but the new strain is very tolerant to carbon monoxide (pCO = 1.7 × 105 Pa, 100% CO). 16S rRNA gene analysis and DNA-DNA hybridization revealed that strain PCO is a strain of Thermoanaerobacter thermohydrosulfuricus. The physiology of strain PCO and other Thermoanaerobacter species was compared, focusing on their tolerance to carbon monoxide. T. thermohydrosulfuricus, T. brockii subsp. finnii, T. pseudethanolicus, and T. wiegelii were exposed to increased CO concentrations in the headspace, while growth, glucose consumption and product formation were monitored. Remarkably, glucose conversion rates by Thermoanaerobacter species were not affected by CO. All the tested strains fermented glucose to mainly lactate, ethanol, acetate, and hydrogen, but final product concentrations differed. In the presence of CO, ethanol production was generally less affected, but H2 production decreased with increasing CO partial pressure. This study highlights the CO resistance of Thermoanaerobacter species.Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684)FCT and European Social Fund (POPH-QREN) through postdoc grant SFRH/BPD/104837/2014ERC grant (project 323009) and a Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO

    Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Second generation hydrogen fermentation technologies using organic agricultural and forestry wastes are emerging. The efficient microbial fermentation of hexoses and pentoses resulting from the pretreatment of lingocellulosic materials is essential for the success of these processes.</p> <p>Results</p> <p>Conversion of arabinose and glucose to hydrogen, by extreme thermophilic, anaerobic, mixed cultures was studied in continuous (70°C, pH 5.5) and batch (70°C, pH 5.5 and pH 7) assays. Two expanded granular sludge bed (EGSB) reactors, R<sub>arab </sub>and R<sub>gluc</sub>, were continuously fed with arabinose and glucose, respectively. No significant differences in reactor performance were observed for arabinose and glucose organic loading rates (OLR) ranging from 4.3 to 7.1 kgCOD m<sup>-3 </sup>d<sup>-1</sup>. However, for an OLR of 14.2 kgCOD m<sup>-3 </sup>d<sup>-1</sup>, hydrogen production rate and hydrogen yield were higher in R<sub>arab </sub>than in R<sub>gluc </sub>(average hydrogen production rate of 3.2 and 2.0 LH<sub>2 </sub>L<sup>-1 </sup>d<sup>-1 </sup>and hydrogen yield of 1.10 and 0.75 molH<sub>2 </sub>mol<sup>-1</sup><sub>substrate </sub>for R<sub>arab </sub>and R<sub>gluc</sub>, respectively). Lower hydrogen production in R<sub>gluc </sub>was associated with higher lactate production. Denaturing gradient gel electrophoresis (DGGE) results revealed no significant difference on the bacterial community composition between operational periods and between the reactors. Increased hydrogen production was observed in batch experiments when hydrogen partial pressure was kept low, both with arabinose and glucose as substrate. Sugars were completely consumed and hydrogen production stimulated (62% higher) when pH 7 was used instead of pH 5.5.</p> <p>Conclusions</p> <p>Continuous hydrogen production rate from arabinose was significantly higher than from glucose, when higher organic loading rate was used. The effect of hydrogen partial pressure on hydrogen production from glucose in batch mode was related to the extent of sugar utilization and not to the efficiency of substrate conversion to hydrogen. Furthermore, at pH 7.0, sugars uptake, hydrogen production and yield were higher than at pH 5.5, with both arabinose and glucose as substrates.</p

    Development of a Bioelectrochemical System as a Tool to Enrich H2-Producing Syntrophic Bacteria

    Get PDF
    Syntrophic microbial partnerships are found in many environments and play critical roles in wastewater treatment, global nutrient cycles, and gut systems. An important type of syntrophy for the anaerobic conversion of carboxylic acids is H2 syntrophy. In this type of microbial partnership, dissolved H2 is produced by a bacterium and rapidly consumed by an archeon (methanogen), resulting in methane gas. This is referred to as interspecies H2 transfer, and some conversions rely on this mechanism to become thermodynamically feasible. For this reason, syntrophic partners are often not possible to separate in the lab, which hampers the full understanding of their physiology. Bioelectrochemical systems (BESs) may show promise to ultimately separate and study the behavior of the syntrophic bacterium by employing an abiotic H2 oxidation reaction at the anode, actively removing dissolved H2. Here, we performed a proof-of-concept study to ascertain whether an H2-removing anode can: (1) provide a growth advantage for the syntrophic bacterium; and (2) compete with the methanogenic partner. A mathematical model was developed to design a BES to perform competition experiments. Indeed, the operated BES demonstrated the ability to provide a growth advantage to the syntrophic bacterium Syntrophus aciditrophicus compared to its methanogenic partner Methanospirillum hungatei when grown in co-culture. Further, the BES provided the never-before isolated Syntrophomonas zehnderi with a growth advantage compared to Methanobacterium formicicum. Our results demonstrate a potential to use this BES to enrich H2-sensitive syntrophic bacteria, and gives prospects for the development of an effective method for the separation of obligate syntrophs

    Prospective CO2 and CO bioconversion into ectoines using novel microbial platforms

    Get PDF
    Microbial conversion of CO2 and CO into chemicals is a promising route that can contribute to the cost-effective reduction of anthropogenic green house and waste gas emissions and create a more circular economy. However, the biotechnological valorization of CO2 and CO into chemicals is still restricted by the limited number of model microorganisms implemented, and the small profit margin of the products synthesized. This perspective paper intends to explore the genetic potential for the microbial conversion of CO2 and CO into ectoines, in a tentative to broaden bioconversion platforms and the portfolio of products from C-1 gas fermentations. Ectoine and hydroxyectoine can be produced by microorganisms growing at high salinity. They are high-value commodities for the pharmaceutical and medical sectors (1000-1200 euro/kg). Currently microbial ectoine production is based on sugar fermentations, but expansion to other more sustainable and cheaper substrates is desirable. In this work, a literature review to identify halophilic microbes able to use CO2 and CO as a carbon source was performed. Subsequently, genomes of this poll of microbes were mined for genes that encode for ectoine and hydroxyectoine synthesis (ectABCD, ask, asd and ask_ect). As a result, we identified a total of 31 species with the genetic potential to synthesize ectoine and 14 to synthesize hydroxyectoine. These microbes represent the basis for the creation of novel microbial-platforms that can promote the development of cost-effective and sustainable valorization chains of CO2 and CO in different industrial scenarios

    Effect of nickel and cobalt on methanogenic enrichment cultures and role of biogenic sulfide in metal toxicity attenuation

    Get PDF
    The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb. 2017.01341/full#supplementary-materialMetals play an important role in microbial metabolism by acting as cofactors for many enzymes. Supplementation of biological processes with metals may result in improved performance, but high metal concentrations are often toxic to microorganisms. In this work, methanogenic enrichment cultures growing on H2/CO2 or acetate were supplemented with trace concentrations of nickel (Ni) and cobalt (Co), but no significant increase in methane production was observed in most of the tested conditions. However, high concentrations of these metals were detrimental to methanogenic activity of the cultures. Cumulative methane production (after 6 days of incubation) from H2/CO2 was 40% lower in the presence of 8 mM of Ni or 30 mM of Co, compared to controls without metal supplementation. When acetate was used as substrate, cumulative methane production was also reduced: by 18% with 8 mM of Ni and by 53% with 30 mM of Co (after 6 days of incubation). Metal precipitation with sulphide was further tested as a possible method to alleviate metal toxicity. Anaerobic sludge was incubated with Co (30 mM) and Ni (8 mM) in the presence of sulphate or sulphide. The addition of sulphide helped to mitigate the toxic effect of the metals. Methane production from H2/CO2 was negatively affected in the presence of sulphate, possibly due to competition of hydrogenotrophic methanogens by sulphate-reducing bacteria. However, in the enrichment cultures growing on acetate, biogenically produced sulphide had a positive effect and more methane was produced in these incubations than in similar assays without sulphate addition. The outcome of competition between methanogens and sulphate-reducing bacteria is a determinant factor for the success of using biogenic sulphide as detoxification method.The research was financially supported by the People Program (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013 under REA agreement 289193. Research of AS and DS is supported by a ERC grant (project 323009) of the European Union Seventh Framework Program FP7 and a Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO).info:eu-repo/semantics/publishedVersio

    Product Inhibition and pH Affect Stoichiometry and Kinetics of Chain Elongating Microbial Communities in Sequencing Batch Bioreactors

    Get PDF
    Anaerobic microbial communities can produce carboxylic acids of medium chain length (e.g., caproate, caprylate) by elongating short chain fatty acids through reversed β-oxidation. Ethanol is a common electron donor for this process. The influence of environmental conditions on the stoichiometry and kinetics of ethanol-based chain elongation remains elusive. Here, a sequencing batch bioreactor setup with high-resolution off-gas measurements was used to identify the physiological characteristics of chain elongating microbial communities enriched on acetate and ethanol at pH 7.0 ± 0.2 and 5.5 ± 0.2. Operation at both pH-values led to the development of communities that were highly enriched (&gt;50%, based on 16S rRNA gene amplicon sequencing) in Clostridium kluyveri related species. At both pH-values, stably performing cultures were characterized by incomplete substrate conversion and decreasing biomass-specific hydrogen production rates during an operational cycle. The process stoichiometries obtained at both pH-values were different: at pH 7.0, 71 ± 6% of the consumed electrons were converted to caproate, compared to only 30 ± 5% at pH 5.5. Operating at pH 5.5 led to a decrease in the biomass yield, but a significant increase in the biomass-specific substrate uptake rate, suggesting that the organisms employ catabolic overcapacity to deal with energy losses associated to product inhibition. These results highlight that chain elongating conversions rely on a delicate balance between substrate uptake- and product inhibition kinetics

    Microbial propionate production from carbon monoxide a novel bioprocess

    Get PDF
    Introduction: The fermentation of CO-rich gases by carboxidotrophic microbes is a promising way to produce valuable organic compounds. Propionate is a value-added compound with numerous industrial applications, e.g. as an antifungal agent in food and feed, and as a building block to produce plastics and herbicides. Propionate is currently produced by petrochemical processes, but it can be produced from ethanol and acetate by some propionogenic bacteria. Ethanol and acetate are usually formed by acetogenic bacteria from CO-rich gases. Accordingly, propionate can be indirectly produced from CO-rich gases, representing a new approach on the realm of microbial CO conversion. Methodology: Four distinct synthetic co-cultures were constructed, consisting of: Acetobacterium wieringae (DSM 1911T) and Pelobacter propionicus (DSM 2379T); A. wieringae (DSM 1911T) and Anaerotignum neopropionicum (DSM 3847T); A. wieringae strain JM and P. propionicus (DSM 2379T); A. wieringae strain JM and A. neopropionicum (DSM 3847T). The physiology of CO conversion to propionate was accessed and a proteogenomic analysis was performed in the best performing co-culture to get insight into the involved biochemical pathways and microbial interactions within the synthetic consortium. Results: Propionate was produced by all the co-cultures, with the highest titer (~24 mM) measured in the co-culture composed of A. wieringae strain JM + A. neopropionicum, which also produced isovalerate (~4 mM), butyrate (~1 mM), and isobutyrate (~0.3 mM). In this synthetic consortium, A. wieringae strain JM converts CO to a acetate and ethanol via the Wood-Ljungdahl pathway; acetate can also be converted to ethanol through the action of aldehyde oxidoreductase (AOR); A. neopropionicum converts ethanol to propionate via the acrylate pathway. In addition, proteins related to amino acid metabolism and stress response were highly abundant during co-cultivation, which raises the hypothesis that amino acids are exchanged by the two microorganisms, and this results in isovalerate and isobutyrate production. Conclusions: This synthetic co-culture represents a new bioprocess for the microbial production of propionate from carbon monoxide, that couples the Wood-Ljungdahl and acrylate pathways. Furthermore, this symbiosis engages an interesting perspective on how C1-fixing and C3-producing microorganisms can be used to expand the product scope of gas fermentation.Portuguese Foundation for Science and Technology (FCT): POCI-01-0145-FEDER-031377; strategic funding of UIDB/04469/2020 unit; BioTecNorte operation (NORTE-01-0145-FEDER-000004); FCT doctoral grants PD/BD/128030/2016 and PD/BD/150583/2020. Netherlands Science Foundation (NWO): Project NWO-GK-07; Perspectief Programma P16-10; Gravitation Grant, Project 024.002.002.info:eu-repo/semantics/publishedVersio

    Co-culture of a novel fermentative bacterium, Lucifera butyrica gen. nov. sp. nov., with the sulfur reducer Desulfurella amilsii for enhanced sulfidogenesis

    Get PDF
    Biosulfidogenesis can be used to remediate low pH and high metal content waters such as acid mine drainage and recover the present metals. The selection of a cheap electron donor for the process is important for the economic viability. In this work we isolated a novel versatile acidotolerant fermentative bacterium (strain ALET) that is able to use a great variety of substrates including glycerol. Strain ALET is an obligate anaerobe, and cells are motile, rod-shaped, spore-forming, and stain Gram-positive. Growth occurred in a pH range from 3.5 to 7 (optimum 5.5), and temperature range from 25 to 40°C (optimum 37°C). It grows by fermentation of sugars, organic acids and glycerol. It has the ability to use thiosulfate, iron and DMSO as electron acceptors. Its genome is 4.7 Mb with 5122 protein-coding sequences, and a G+C content of 46.9 mol%. Based on 16S rRNA gene sequence analysis, the closest cultured species is Propionispora hippei (91.4% 16S rRNA gene identity) from the Sporomusaceae family (Selenomonadales order, Negativicutes class, Firmicutes phylum). Based on the distinctive physiological and phylogenetic characteristics of strain ALET, a new genus and species Lucifera butyrica gen. nov., sp. nov., is proposed. The type strain is ALET (=JCM 19373T=DSM 27520T). Strain ALET is an incomplete oxidizer and acetate, among other products, accumulates during glycerol conversion. Strain ALET was used to extend the substrate range for sulfur reduction by constructing cocultures with the acetate oxidizer and sulfur reducer Desulfurella amilsii. The coculture was tested with glycerol as substrate in batch and chemostat experiments. Acetate formed by fermentation of glycerol by strain ALET resulted in sulfur reduction by D. amilsii. The coculture strategy offers good perspectives to use a wide range of cost-efficient substrates, including glycerol, to produce sulfide by specialized sulfur reducers. The recovery of heavy metals from metalliferous streams may become economically feasible by this approach.The doctoral study program was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), organization of the Brazilian Government. Research of DS, IS-A, and AS is financed by an ERC grant (Project 323009) and the Gravitation grant (SIAM 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation.info:eu-repo/semantics/publishedVersio

    Novel energy conservation strategies and behavior of Pelotomaculum schinkii driving syntrophic propionate catabolism

    Get PDF
    Under methanogenic conditions, short-chain fatty acids are common byproducts from degradation of organic compounds and conversion of these acids is an important component of the global carbon cycle. Due to the thermodynamic difficulty of propionate degradation, this process requires syntrophic interaction between a bacterium and partner methanogen; however, the metabolic strategies and behavior involved are not fully understood. In this study, the first genome analysis of obligately syntrophic propionate degraders (Pelotomaculum schinkii HH and P. propionicicum MGP) and comparison with other syntrophic propionate degrader genomes elucidated novel components of energy metabolism behind Pelotomaculum propionate oxidation. Combined with transcriptomic examination of P. schinkii behavior in co-culture with Methanospirillum hungatei, we found that formate may be the preferred electron carrier for P. schinkii syntrophy. Propionate-derived menaquinol may be primarily re-oxidized to formate, and energy was conserved during formate generation through newly proposed proton-pumping formate extrusion. P. schinkii did not overexpress conventional energy metabolism associated with a model syntrophic propionate degrader Syntrophobacter fumaroxidans MPOB (i.e., CoA transferase, Fix, and Rnf). We also found that P. schinkii and the partner methanogen may also interact through flagellar contact and amino acid and fructose exchange. These findings provide new understanding of syntrophic energy acquisition and interactions. This article is protected by copyright. All rights reserved.We thank Steven Aalvink for scanning electron microscopy analysis and WEMC for making the system available. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. [323009] and a Gravitation Grant (Project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Organisation for Scientific Research (NWO). This work was also supported by The Japan Society for the Promotion of Science with Grant-in-Aid for Scientific Research No. 18H03367 to MK Nobu and 17H05239 and 18H01576 to T Narihiro.info:eu-repo/semantics/publishedVersio
    corecore