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Abstract 

Background: Second generation hydrogen fermentation technologies using 

organic agricultural and forestry wastes are emerging. The efficient microbial 



fermentation of hexoses and pentoses resulting from the pretreatment of 

lingocellulosic materials is essential for the success of these processes. 

Results: Conversion of arabinose and glucose to hydrogen, by extreme 

thermophilic, anaerobic, mixed cultures was studied in continuous (70ºC, pH 5.5) 

and batch (70ºC, pH 5.5 and pH 7) assays. Two expanded granular sludge bed 

(EGSB) reactors, Rarab and Rgluc, were continuously fed with arabinose and 

glucose, respectively. No significant differences in reactor performance were 

observed for arabinose and glucose organic loading rates (OLR) ranging from 4.3 

to 7.1 kgCOD m-3 d-1. However, for an OLR of 14.2 kgCOD m-3 d-1, hydrogen 

production rate and hydrogen yield were higher in Rarab than in Rgluc (average 

hydrogen production rate of 3.2 and 2.0 LH2 L
-1 d-1 and hydrogen yield of 1.10 

and 0.75 molH2 mol-1substrate for Rarab and Rgluc, respectively). Lower hydrogen 

production in Rgluc was associated with higher lactate production. Denaturing 

gradient gel electrophoresis (DGGE) results revealed no significant difference on 

the bacterial community composition between operational periods and between 

the reactors. Increased hydrogen production was observed in batch experiments 

when hydrogen partial pressure was kept low, both with arabinose and glucose 

as substrate. Sugars were completely consumed and hydrogen production 

stimulated (62% higher) when pH 7 was used instead of pH 5.5. 

Conclusions: Continuous hydrogen production rate from arabinose was 

significantly higher than from glucose, when higher organic loading rate was 

used. The effect of hydrogen partial pressure on hydrogen production from 

glucose in batch mode was related to the extent of sugar utilization and not to the 

efficiency of substrate conversion to hydrogen. Furthermore, at pH 7.0, sugars 

uptake, hydrogen production and yield were higher than at pH 5.5, with both 

arabinose and glucose as substrates. 

 

{Key words: biohydrogen, extreme thermophilic conditions, arabinose, hydrogen 

partial pressure, pH, lactate} 



Background 

Hydrogen is a promising renewable energy carrier that can contribute towards a 

low carbon economy. Fermentative hydrogen production from carbohydrate-

containing feedstock, such as glucose, sucrose and starch, has been extensively 

studied [1, 2]. However, second generation hydrogen fermentation technologies 

are presently emerging as promising and more cost-effective solutions [1, 3]. 

Lignocellulosic material must be pre-treated prior to fermentation to hydrogen in 

order to remove lignin and hemicelluloses, reduce the cellulose crystallinity and 

increase the surface area of the material to enhance the release of sugars [4]. 

Physico-chemical pre-treatment of lignocellulosic material, such as the 

application of acid, alkaline or oxidative conditions at ambient or elevated 

temperatures, yields a mixture of pentoses and hexoses [1]. Efficient microbial 

fermentation of hexoses and pentoses is, therefore, the key step for hydrogen 

production from plant biomass. However, combined fermentation of mixtures of 

hexoses and pentoses is often prevented due to catabolic repression; in the 

presence of glucose, pentoses might be converted to a lesser extent thereby 

decreasing overall fermentation yields [5, 6]. Moreover, efficient hydrogen 

production from sugars is dependent on the different possible fermentation 

pathways  (Figure 1).  

 

Figure 1 

Most of the extreme thermophiles from the phylum Clostridia use the Embden-

Meyerhof pathway to metabolize hexose sugars to pyruvate [9]. Biohydrogen can 

be then formed via decarboxylation of pyruvate to acetyl CoA, in which reduced 

ferredoxin (Fdred) is generated and acts as a direct electron donor for proton 

reduction to hydrogen (Figure 1). Maximum hydrogen yield, both from hexoses or 

pentoses, is obtained with acetate as the fermentation product (equations 1 and 

2). Low yields are associated with the formation of more reduced end products 



compared to acetate, such as butyrate, propionate and alcohols (ethanol, 

butanol) and lactic acid. 

C6H12O6 + 2H2O         2CH3COO- + 2CO2 + 2H+ + 4H2                                                 

(1) 

C5H10O5 + 1.67H2O          1.67CH3COO- + 1.67CO2 + 1.67H+ + 3.33H2                        

(2) 

Environmental parameters such as pH, hydrogen partial pressure and 

temperature have been documented as key factors in hydrogen fermentation 

[10]. The pH of the medium is known to regulate the shift to solventogenesis 

during the fermentation of sugars [7]; the effect of low pH in the inhibition of 

methanogenic archaea is also recognized and could be potentially used as a 

selective pressure in mixed culture systems. Metabolic pathways of hydrogen 

formation are sensitive to hydrogen partial pressure (PH2) and are subject to end-

product inhibition [11, 12]. In addition, fermentation processes operating under 

thermophilic (45 to 60ºC) and extreme thermophilic (65 to 80ºC) could possibly 

result in higher hydrogen yields due to favorable thermodynamics and lower 

variety in soluble by-products [13]. High temperatures inhibit the growth of 

methanogenic archaea and homoacetogenic bacteria [13]; this is an important 

advantage when using mixed-cultures for hydrogen production because it 

prevents consumption of hydrogen by these microbial groups (as is often the 

case in mesophilic fermentation). Also, higher hydrolysis rates of cellulosic 

material have been observed in studies performed under thermophilic conditions, 

with the concurrent formation of higher amounts of fermentable sugars [14]. 

Hydrogen production by mixed culture fermentation is more suited for industrial 

applications, when compared to pure culture fermentation. Some of the 

advantages are: (i) no need for sterile cultivation, (ii) presence of high microbial 

diversity, which offers increased adaptation capacity, (iii) possibility of mixed 

substrates co-fermentation, and (iv) higher capacity for continuous processing 

[15, 16]. However, and although there is a considerable number of studies on H2 

production at extreme thermophilic conditions using pure cultures, studies using 



mixed-cultures are lacking [17, 18]. Also, the effect of pH and hydrogen partial 

pressure has been described in several pure cultures of thermophiles and 

extreme-thermophiles but the effect in mixed cultures is not yet clear [17]. 

In the present study, the conversion of a C5-sugar (arabinose) and a C6-sugar 

(glucose) to hydrogen, using anaerobic mixed-cultures under extreme 

thermophilic conditions (70ºC), was studied in continuous expanded granular 

sludge bed (EGSB) reactors. Microbial diversity in arabinose- and glucose-fed 

bioreactors was assessed using a PCR-DGGE (denaturing gradient gel 

electrophoresis) approach. Additional batch experiments were performed with 

extreme-thermophilic mixed cultures to study the effect of hydrogen partial 

pressure and pH on hydrogen production from arabinose and glucose. 

 

Results 

EGSB reactors performance 

Hydrogen production rates in arabinose- and glucose-fed reactors (Rarab and 

Rgluc) are shown in Figures 2 and 3, respectively. Only H2 and CO2 were detected 

in the gas phase; methane was not produced during all operation time. During 

start-up (period I), hydrogen production rates of approximately 0.3 L H2 L-1d-1 

were observed in both reactors. This corresponds to hydrogen yields of roughly 

0.2 and 0.3 mol H2 per mol of substrate consumed, for Rarab and Rgluc 

respectively (Table 1). In period II, the increase in arabinose and glucose inlet 

concentration to 16.6 mM and 13.8 mM, respectively, resulted in hydrogen yields 

of about 0.80 mol H2 per mole of substrate in both Rarab and Rgluc (Table 1). 

Maximum hydrogen production rates in period II were of 1.36 ± 0.04 and 1.12 ± 

0.07 LH2 L-1 d-1 in Rarab and Rgluc, respectively. Substrate was completely 

consumed in both reactors and the main by-products formed were butyrate, 

acetate and lactate (Figures 2 and 3). In operation period III, substrate 

concentrations fed to Rarab and Rgluc were increased to 33.3 mM of arabinose and 

27.7 mM of glucose, respectively. As a result of this increase, there was a 

temporary raise in arabinose/glucose concentration in the effluent but, after 13 



days of acclimation to the higher substrate loads, virtually all glucose and an 

average of 79% arabinose were used in the reactors (Table 1) Steady state 

hydrogen production rates of 3.26 ± 0.16 and 2.06 ± 0.06 L H2 L-1 d-1 were 

observed in Rarab and Rgluc, respectively (Figures 2 and 3). During period III, Rgluc 

showed a stable hydrogen yield of about 0.75 mol H2 per mole of substrate 

consumed. Hydrogen yield in Rarab was significantly higher, that is. 1.10 mol H2 

per mole of substrate consumed. Lactate concentration in Rgluc increased sharply 

during period III of operation reaching values of approximately 20 mM (Figure 3). 

An increase in lactate concentration was also observed in Rarab, but did not 

exceed 11 mM (Figure 2). Estimation of the theoretical reduced form of 

nicotinamide adenine dinucleotide (NADH) {AU Query: Please replace NADH in 

full.} production from glucose and arabinose, considering the main catabolic 

pathways (that is, Embden-Meyerhof for glucose and a combination of pentose 

phosphate and Embden-Meyerhof pathways for arabinose (Figure 1)), 

demonstrates that a higher reducing power was potentially formed in Rgluc than in 

Rarab. Estimated NADH concentration in Rgluc was 42 mM after three days of 

operation, while in Rarab was 37 mM after five days of operation.  

Bacterial community composition dynamics in EGSB reactors 

DGGE profiles generated for sludge samples withdrawn from Rarab and Rgluc 

(Figure 4) show that bacterial composition in both reactors’ sludge at the end of 

periods II (Day 27) and III (Day 41) are identical. Differences in substrate 

composition did not affect the bacterial community in reactors Rarab and Rgluc and 

similarity index between Arab/Gluc samples at the end of the operation was as 

high as 94%. Predominant DGGE bands in Rgluc and Rarab were identical to the 

ones present in the inoculum used in this study and for which the phylogeny had 

been previously assessed [6]. Two of the predominant DGGE bands showed 

high similarity (>99%) with the hydrogen-producing Thermoanaerobacterium 

thermosaccharolyticum. Members of the Klebsiella, Bacillus and 

Sporolactobacillus genera, detected in the inoculum sludge, were also 

predominant in Rgluc and Rarab. 



Effect of hydrogen partial pressure and pH on batch hydrogen production 

from arabinose and glucose  

The effect of the hydrogen partial pressure, while using arabinose and glucose as 

substrates, was studied in batch experiments at pH 5.5 (equivalent to pH 5.0 at 

700C). Assays were performed allowing the accumulation of hydrogen in the 

headspace (no headspace flushing, NHF), or preventing hydrogen accumulation 

in the headspace (headspace flushing, HF). Subsequently, HF assays were 

performed at pH 7.0 (that is, pH 6.5 at 700C) to study the effect of pH increase in 

hydrogen production. Substrates were added at the beginning of the experiment 

and a second addition was performed after complete depletion of the first load. 

In the NHF (pH 5.5), maximum hydrogen concentration in the gas was achieved 

44 and 20 h after the second addition of arabinose or glucose addition, 

respectively (Figure 5a, b). At this point, hydrogen partial pressure in both 

arabinose and glucose assays was roughly 1.2 x 104 Pa (at 70ºC), which 

corresponds to a dissolved hydrogen concentration of 105 µM. From this point 

on, hydrogen production was not significant, even though only 35% of arabinose 

and 13% of glucose were present at the end of the experiment. Identical 

hydrogen yield, that is, 0.7 mol H2 per mole of substrate, was obtained for NHF 

arabinose and glucose experiments (Table 2). 

Hydrogen production from arabinose could be increased in assays in which 

hydrogen partial pressure in the headspace was kept low (HF). A cumulative 

hydrogen production of 1. To -1.7 x 104 Pa (at 70ºC) was attained in HF (pH 5.5) 

arabinose experiments (Figure 5 c). This value is significantly higher than the one 

obtained in NHF experiments (P<0.01: t-test), and corresponds to an increase of 

about 40% in hydrogen pressure. However, the highest increment in hydrogen 

cumulative production (that is, 62%) was observed in HF arabinose assays 

performed at pH 7.0 (cumulative hydrogen pressure of 2.8 x 104 Pa at 70ºC 

(Figure 5f)). Arabinose was totally consumed in HF assays at pH 7.0, while a 

fraction substrate (approximately 1%) was not used in HF assays at pH 5.5 

(Figure 5c, e). Nevertheless, non-consumed arabinose in HF at pH 5.5 was 



considerably lower than in NHF assays (Figure 5a, c). Hydrogen yields in HF 

arabinose experiments at pH 5.5 and pH 7.0 were 0.76 and 1.15 mol H2 per mole 

of substrate consumed, respectively (Table 2). 

Hydrogen production values in HF and NHF glucose experiments at pH 5.0 were 

not significantly different. However, cumulative hydrogen production from glucose 

in HF experiments at pH 7.0 was significantly higher (P <0.001: t-test) than at pH 

5.5 (Figure 5d, f). Hydrogen cumulative pressure in HF glucose assays at pH 7 

was of 2.6 x 104 Pa (at 70ºC, Figure 5f). Glucose was totally consumed in HF 

assays both at pH 5.5 and pH 7.0. Hydrogen yields in HF glucose experiments at 

pH 5.5 and pH 7.0 were 0.6 and 1.4 mol H2 per mole of substrate consumed, 

respectively (Table 2). 

At pH 5.5 approximately 20 mM of ethanol was produced from both substrates. 

At pH 7 ethanol formation did not exceed 15 mM (Figure 6). Acetate formation 

from both substrates at pH 7 achieved approximately 14 mM (Figure 6). In the 

case of glucose a decrease in 40% of lactate formation was also observed in 

incubations at pH 7. 

 

Discussion 

Continuous hydrogen production in EGSB reactors 

Rarab and Rgluc showed similar performance during periods I and II of operation. 

However, when a higher organic loading rate was applied to the reactors (period 

III of operation, arabinose and glucose concentrations of 33.3 and 27.7, 

respectively), Rarab showed a steady state hydrogen production rate 1.6x higher 

than Rgluc. Furthermore, hydrogen production rate measured in Rarab was 1.3x 

higher than the one reported by Abreu et al. [6] when feeding a EGSB reactor 

with a mixture of arabinose and glucose (1/1). Hydrogen production yield in Rarab 

was 1.10 mol H2 per mole of arabinose consumed, which is considerably higher 

than the yields obtained in Rgluc (0.75 mol H2 per mole of glucose) and Rgluc+arab 



(0.77 mol H2 per mole glucose + arabinose) (Table 1). According to these results, 

the presence of glucose may possibly decrease the overall hydrogen yield in 

continuous operation, particularly when higher organic loading rates are applied. 

Lower hydrogen production observed in Rgluc was likely associated with high 

lactate production (Figure 3). According to the Embden-Meyerhof pathway 

(Figure 1), sugar-derived pyruvate is (1) reduced to lactate, with regeneration of 

NADH (Table 3, reaction 1), or (2) oxidized to acetyl-CoA, with the production of 

reduced ferredoxin (Table 3, reaction (2)). Reaction (1) does not yield hydrogen, 

while in reaction (2) one mol of pyruvate results in the formation of 2 mol 

hydrogen. However, and considering Gibbs energy variations, reaction (1) seems 

to be energetically more favorable than reaction (2), especially at higher 

hydrogen partial pressures (Table 3).  

 

Table 3 

 

The fact that the microbial communities’ composition in the reactors did not 

change along the three operational periods (Figure 4), suggests that the higher 

concentration of lactate produced in Rgluc during period III is related to metabolic 

changes and is not a consequence of bacterial community shifts. Two of the 

predominant DGGE bands present in the reactors sludge could be affiliated with 

Thermoanaaerobacterim thermosacharolyticum (similarity higher than 99%). A 

draft genome of T. thermosacharolyticum (Joint Genome Institute) allowed a 

search of genes that encode metabolic enzymes involved in pyruvate conversion. 

A L-lactate dehydrogenase (EC 1.1.1.27) was present indicating the possibility of 

pyruvate reduction to lactate. Some genes codifying subunits of enzymes related 

to pyruvate-ferredoxin oxidoreductases and NADH oxidoreductases were also 

found but a complete picture of the mechanisms involved in pyruvate conversion 

to acetyl-CoA cannot be retrieved. Clones corresponding to other predominant 

DGGE bands present in reactors sludge exhibited highest sequence identity with 

Klebsiella sp. (99%) and Bacillus coagullans (99%). All these microorganisms are 

able to produce hydrogen and lactate, among other products, from a variety of 



carbon sources [21-23]. No genomic information is available for these species 

and physiological information is sometimes contradictory. For instance, the 

presence of Bacillus coagullans in hydrogen producing reactors has been 

associated to the increase of lactate production [24, 25], but also to optimized 

hydrogen production [23, 26]. 

The main possible reactions for the fermentation of arabinose and glucose, and 

the calculated Gibbs free energy of global reactions are shown in Table 3 

(equations (3) to (10)) (only the reactions yielding experimentally detected 

soluble fermentation products in Rgluc and Rarab are represented). From a 

thermodynamic point of view, lactate formation from glucose and arabinose is 

less favorable than the formation of butyrate or ethanol. However, in continuous 

processes lactate was one of the main soluble fermentation products present in 

both reactors, especially in Rgluc at higher influent, substrate concentration (27.7 

mM). This might be related to the need of recycling reducing power from NADH. 

It has been proposed that thermophiles usually possess some escape routes to 

dispose of reductants in order to prevent obstructions in their metabolic flux. A 

possible route for this is the production of more reduced organic compounds like 

lactate, acetone and butanol [9, 23]. A switch to lactate formation in 

Thermoanaerobacterium sp. was observed as a mechanism of reductant 

disposal and NAD(P)H oxidation [9, 27]. 

Hydrogen partial pressure and pH influence on hydrogen production yields 

The metabolic pathways of hydrogen formation are sensitive to hydrogen 

concentrations and are subject to end-product inhibition. Results from this study 

showed that hydrogen production from arabinose and glucose is indeed higher 

when hydrogen is not allowed to accumulate in the headspace. Keeping low 

hydrogen partial pressure caused an increase in hydrogen production that could 

be mainly related to enhanced sugar utilization under these conditions. 

Nevertheless, in arabinose assays substrate was never completely depleted, not 

even when hydrogen was removed from the headspace. This can indicate that 



limiting factors other than PH2, such as liquid by-products inhibition, might be 

involved in hydrogen production from arabinose. 

It has been reported that thermophilic hydrogen producing microorganisms could 

be inhibited by the presence of hydrogen, even when at very low partial pressure 

(from 0.1 x 104 to 7.5 x 104 Pa) [28]. Values of hydrogen partial pressure of 2 x 

103 Pa, 1.6 x 103 Pa and 1.0 x 104 Pa were described as inhibitory for hydrogen 

production with Thermotoga maritima, Pyrococcus furiosus and 

Caldicellulosiruptor saccharolyticus, respectively [29]. In the present study 

hydrogen production by extreme thermophile mixed cultures using glucose and 

arabinose was inhibited at a PH2 similar to the one reported for C. 

saccharolyticus (that is, 1.2 x 104 Pa at 70ºC). 

Higher cumulative hydrogen production and yields were obtained at pH 7.0, 

either using glucose or arabinose as substrate. Lower hydrogen production at pH 

5.5 was coupled to high ethanol and low acetate production (Figure 6). The 

present study suggests that, at extreme thermophilic conditions, maintenance of 

neutral pH (around 6.5 at 70oC) can aid preventing hydrogen losses by avoiding 

the production of more reduced organic compounds (such as lactic acid, acetone, 

butanol, and so on). 

Overall, the results presented in this study show that both pH and hydrogen 

partial pressure affect hydrogen production efficiencies by extreme thermophilic 

mixed cultures. However, pH influenced hydrogen production in a greater extent 

than hydrogen partial pressure, both when using glucose or arabinose as 

substrate. Different soluble fermentation products’ composition was observed in 

batch experiments and in continuous reactors. This can be related with the 

accumulation of soluble fermentation products happening in the batch assays, 

which can lead to different environmental conditions and, therefore, induce 

different metabolic pathways [30-32]. Nevertheless, batch results can give 

valuable insights for improving hydrogen production in continuous process. 

 



Conclusions 

In continuous reactor, hydrogen production rate from arabinose was significantly 

higher than from glucose, when using organic loading rates of 14 KgCOD m-3 d-1. 

This fact was associated with higher lactate production in the reactor fed with 

glucose, while in the arabinose-fed reactor, acetate and ethanol were the main 

end-products formed. The higher concentration of lactate was not a consequence 

of bacterial community shift, and is likely related to changes in the main 

metabolic pathways of glucose catabolism. 

In batch mode, the effect of hydrogen partial pressure on hydrogen production 

from glucose was related to the extent of sugar utilization and not to the 

efficiency of substrate conversion to hydrogen. Furthermore, at pH 7.0, sugars 

uptake, hydrogen production and yield were higher than at pH 5.5, with both 

arabinose and glucose as substrates. 

 

Methods 

Continuous hydrogen production in EGSB reactors  

Experiments were carried out in two plexi-glass EGSB reactors. An arabinose 

reactor (Rarab) and a glucose reactor (Rgluc) were fed with L-arabinose and 

glucose, respectively. EGSB reactors had a height of 1.95 m and internal 

diameter of 21 mm. Total liquid volume was 1.30 L, including reaction-zone 

volume of 0.7 L. Reactors were operated at 70 ± 1ºC by means of an external 

water jacket, and pH inside the reactors was maintained at 5.5 ± 0.5. Superficial 

velocity was set at 10.0 m h-1 (using internal recirculation) with an hydraulic 

retention time (HRT) of 9 h. Before start-up, Rarab and Rgluc were inoculated with 

400 mL of granular sludge from a lab-scale hydrogen-producing reactor that had 

been fed with a mixture of arabinose (17 mM) and glucose (14 mM) for two 

months. Start-up of Rarab was done using a constant arabinose feed 

concentration of 10.0 mM (period I); afterwards, arabinose concentrations of 16.6 



mM (period II) and 33.3 mM (period III) were fed. Start-up of Rgluc was done using 

a constant glucose feed concentration of 8.3 mM (period I); afterwards, 

concentrations of 13.8 mM (period II) and 27.7 mM (period III) were tested (Table 

4). Arabinose and glucose concentration differed in order to have identical 

theoretical hydrogen yields in both reactors (that is, 33.3, 55.5 and 110.8 mM H2 

for periods I, II and III, respectively). Sodium bicarbonate was added to the feed 

as alkalinity source (at a final concentration of 1 to 2 g L-1). Macronutrients 

solution containing 30 g L-1MgSO4.7H2O, 28.3 g L-1 KH2PO4 and 170 g L-1) NH4Cl 

was also added (0.6 mL macronutrients solution per g of chemical oxygen 

demand (COD) in the feed). 

Batch experiments 

Seed sludge 

Granular sludge used for inoculating batch assays for studying arabinose- and 

glucose-conversion was collected from reactors Rarab and Rgluc, respectively. 

Medium composition and substrates  

Assays were performed in 70 mL serum bottles containing 18 mL of buffered 

medium. Phosphate-buffered medium (20 mM) and bicarbonate-buffered medium 

(Stams et al. 1993) were used for experiments at pH 5.5 and pH 7, respectively. 

Bottles with phosphate-buffered medium were flushed with N2 (100%), while 

bottles with bicarbonate-buffered medium were equilibrated with a mixture of 

N2:CO2 (80:20%). Both media were supplemented with trace elements, salts and 

vitamins according to the procedure described by Stams et al. [33]; yeast extract 

was added to a final concentration of 0.5 g L-1. Medium was reduced with 0.8 mM 

sodium sulfide (Na2S.9H2O) and inoculated with 0.4 g of granular sludge. 

Arabinose (13 mM) and glucose (11 mM) were used as the main carbon source. 

Bottles were incubated in the dark at 70ºC without shaking. After substrate 

depletion, a second pulse of 13 mM arabinose or 11 mM glucose was added and 

incubation extended. 



Effect of hydrogen partial pressure  

The effect of hydrogen partial pressure on hydrogen production from arabinose 

and glucose was investigated in batch mode at pH 5.5. Two series of batch 

experiments were performed: in series NHF (no headspace flushing), hydrogen 

was allowed to accumulate in the gas phase, while in series HF (headspace 

flushing) hydrogen was removed from the bottles’ headspace and replaced by 

100% N2. All experiments were performed in triplicate and included controls 

without substrate. Sugars consumption, production of hydrogen gas and soluble 

fermentation products were monitored. Dissolved hydrogen concentration was 

calculated using the Henry’s law at 70ºC: KH*Pi, where KH is the Henry’s law 

constant for hydrogen (8.7 x 10-9 M/Pa at 70ºC). 

Effect of pH  

The effect of pH on hydrogen production from arabinose and glucose 

fermentation was studied in two series of batch experiments, one at pH 7.0 and 

the other at pH 5.5. Incubation was done at 70ºC and all the experiments were 

performed in triplicate. Sugars consumption, formation of hydrogen gas and 

soluble fermentation products were monitored and dissolved hydrogen 

concentration was calculated using the Henry’s law at 70ºC. 

Analytical methods 

Hydrogen concentration in the gas phase was determined by gas 

chromatography (GC) using a Hayesep Q column (80/100 mesh) and thermal 

conductivity detector Varian 3300 Gas Chromoatograph, (Varian, Walnut Creek, 

USA)) with nitrogen (30 mL minute-1) as the carrier gas. The injector, detector 

and column temperatures were 120, 170, and 35ºC respectively. Methane and 

carbon dioxide content of the gas phase from batch experiments and EGSB 

reactors was determined by gas chromatography using a Porapack Q (100 to 

180 mesh) column, with helium as the carrier gas at 30 mL minute-1, and a 

thermal conductivity detector. Temperatures of the detector, injector and oven 

were 110, 110 and 35ºC, respectively. In the EGSB reactors gas flow rate was 



measured by a Ritter Milligascounter (Dr. Ing. Ritter Apparatebau GmbH, 

Bochum, Germany). Volatile fatty acids (VFA), ethanol, lactic acid, L-arabinose 

and glucose were determined by high performance liquid chromatography using 

an HPLC (Jasco, Tokyo, Japan) with a Chrompack column (6.5 x 30 mm2); 

sulfuric acid (0.01 N) at a flow rate of 0.7mL minute-1 was used as mobile phase. 

Column temperature was set at 60ºC. Detection of VFA, lactic acid, ethanol, 

arabinose, glucose was made sequentially using a UV detector at 210 nm and a 

RI detector. 

PCR-DGGE 

Representative granular sludge samples were collected from Rarab and Rgluc and 

stored at -18ºC. Total genomic DNA was extracted from approximately 500 µL of 

sample by using the FastDNA SPIN kit for soil (Qbiogene, Carlsbad, CA, USA). 

16S rRNA gene fragments of approximately 450 bp were amplified for DGGE 

analysis by PCR using a Taq DNA polymerase kit (Life Technologies, 

Gaithersburg, MD, USA) using the primer set 954GC-f and 1369-r, as previously 

described by Nubel et al. [34]. The size of the obtained PCR products was 

checked by comparison with appropriate size and mass standard (MBI 

Fermentas, Vilnius, Lithuania), by electrophoresis on an 1% (w/v) agarose gel 

and ethidium bromide staining. Gels ran at a constant voltage of 100 V in an 

agarose gel electrophoresis system (Mupid-EX, Seraing, Belgium ). Nucleic acids 

were detected using an UV transilluminator (BioRad, Hercules, CA, USA). 

DGGE analysis of the amplicons was done by using the DCode system (Bio-

Rad). PCR products were electrophoresed in a 0.5x Trisacetate-EDTA buffer for 

16 h at 85 V and 60ºC on polyacrylamide gel (8%) containing a linear gradient 

ranging from 30% to 60% denaturant. Silver staining of DGGE gels was 

performed as previously described [35]. DGGE gels were scanned at 400 dpi and 

the DGGE profiles compared using the Bionumerics 5.0 software package 

(Applied Maths, Gent, Belgium). Similarity indices (Si) of the compared profiles 

were calculated from the densitometric curves of the scanned DGGE profiles by 

using the Pearson product-moment correlation [36]. 



Gibb’s Free energy calculations 

Standard Gibb’s free energy at 25ºC (∆Go) was calculated using standard Gibb’s 

free energy of formation values (∆Go
f) obtained from the literature [19, 20] or 

calculated using the group addition method [19].  
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Figure legends 

 

Figure 1. Major metabolic pathways for glucose and arabinose fermentation in 

mixed cultures (adapted from [7, 8]). 

 

Figure 2. Effect of OLR on performance of Rarab (a) hydrogen production rate and 

HRT, (b) soluble fermentation products and residual arabinose.  

Figure 3. Effect of OLR on performance of Rgluc (a) hydrogen production rate and 

HRT, (b) soluble fermentation products and residual glucose.  

Figure 4. DGGE profile of granular sludge samples from a reactor fed with 

arabinose and glucose [6] and at Day 27 and Day 41 from arabinose (and 

glucose reactors. 

 

Figure 5. Time course of hydrogen production and substrate consumption, O 

PiH2 ;  arabinose; x glucose. a, b) pH 5.5 without headspace flushing. c, d) pH 

5.5 with headspace flushing. e, f) pH 7 with headspace flushing. 

 

Figure 6. Time course of soluble fermentation products, O ethanol;  lactate; + 

acetate. a, b) pH 5.5 with headspace flushing. c, d) pH 7 with headspace 

flushing.  
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Table 2. Substrate consumption and hydrogen yields from 

batchexperiments. 

 

  Non Headspace Flushing (NHF)  

pH Substrate 

Substrate 

consumed 

(%) 

Yield (molH2 

mol of 

substrate 

consumed-1) 

Percentage of 

H2 produced 

from the 

theoretical 

yield 

(%) 

pH at the end 

of the batch 

experiment 

arabinose 65 0.68 ± 0.05 20 5.8 
5.5 

glucose 87 0.67 ± 0.13 17 5.2 

 

  Headspace Flushing (HF)  

pH Substrate 

Substrate 

consumed 

(%) 

Yield (molH2 

mol of 

substrate 

consumed-1) 

Percentage of 

H2 produced 

from the 

theoretical 

yield 

(%) 

pH at the end 

of the batch 

experiment 

arabinose 84 0.76 ± 0.06 23 5.3 
5.5 

glucose 100 0.58 ± 0.07 15 5.2 

arabinose 100 1.15 ± 0.03 35 6.5 
7 

glucose 100 1.36 ± 0.14 34 6.8 



 

 

 

Table 3. Gibbs free energy changes for some of the glucose and arabinose 

oxidation reactions. 

Equation  ∆G0’ a 

(kJ 

reaction-1) 

∆G’ b 

(kJ 

reaction-1) 

Fermentative reactions 

NADH + H+ + pyruvate- ���� NAD+ + lactate- (1) -25  

2 ferredoxin(red) + 2H+ ���� 2 ferredoxin(ox) + 

H2 

(2) +3 -25 

Glucose oxidation reactions 

1 glucose + 2H2O ���� 2 acetate- + 2CO2 + 2H+ + 

4H2 

(3) -216  

1 glucose ���� 1 butyrate- + 2CO2 + 2H+ + 2H2 (4) -264  

1 glucose  ���� 2 lactate- + 2H+ (5) -197  

1 glucose ���� 2ethanol- + 2CO2 + 2H+ (6) -315  

Arabinose oxidation reactions 

1 arabinose+ 1.67H2O ���� 1.67 acetate- + 

1.67CO2 + 1.67H+ + 3.33H2 

(7) -192  

1 arabinose ���� 0.83 butyrate- + 1.66CO2 + 

0.83H+ + 1.66H2 

(8) -228  



1 arabinose ���� 1.66 lactate- + 1.66H+ (9) -172  

1 arabinose ���� 1.66 ethanol- + 1.66CO2 + 

1.66H+ 

(10) -269  

Standard Gibbs energies of formation of arabinose (in aqueous solution, pH 7 and 25ºC) were 

estimated from the structures of the compounds, using a group contribution method described by 

[19]; standard Gibbs energies of formation of other compounds involved in the reactions were 

obtained from [20] 

a
 Gibbs free energies (at 25ºC) calculated at standard conditions (solute concentrations of 1 M 

and gas partial pressure of 10
5
 Pa). 

b
 Gibbs free energies (at 25ºC) calculated at standard conditions (solute concentrations of 1 M 

and gas partial pressure of 1 Pa). 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Operational conditions of glucose reactor (Rgluc) and arabinose 

reactor (Rarab) 

 

 

 

 

 



Glucose Reactor (Rgluc) 

Feed Concentration 

(mM) 

HRT (h) OLR (Kg 

COD/m3/d) 

8.3 9 4.3 

13.8 9 7.1 

27.7 9 14.2 

Arabinose reactor (Rarab) 

Feed concentration 

(mM) 

HRT (h) OLR (Kg 

COD/m3/d) 

10 9 4.3 

16.6 9 7.1 

33.3 9 14.2 

 

 

 

 

 

 

 

 





Figure 2



Figure 3








	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

