45 research outputs found

    Influence of temperature and relative humidity on survival and fecundity of three tsetse strains

    Get PDF
    Background: Tsetse flies occur in much of sub-Saharan Africa where they are vectors of trypanosomes that cause human and animal African trypanosomosis. The sterile insect technique (SIT) is currently used to eliminate tsetse fly populations in an area-wide integrated pest management (AW-IPM) context in Senegal and Ethiopia. Three Glossina palpalis gambiensis strains [originating from Burkina Faso (BKF), Senegal (SEN) and an introgressed strain (SENbkf)] were established and are now available for use in future AW-IPM programmes against trypanosomes in West Africa. For each strain, knowledge of the environmental survival thresholds is essential to determine which of these strains is best suited to a particular environment or ecosystem, and can therefore be used effectively in SIT programmes. Methods: In this paper, we investigated the survival and fecundity of three G. p. gambiensis strains maintained under various conditions: 25 °C and 40, 50, 60, and 75 % relative humidity (rH), 30 °C and 60 % rH and 35 °C and 60 % rH. Results: The survival of the three strains was dependent on temperature only, and it was unaffected by changing humidity within the tested range. The BKF strain survived temperatures above its optimum better than the SEN strain. The SENbkf showed intermediate resistance to high temperatures. A temperature of about 32 °C was the limit for survival for all strains. A rH ranging from 40 to 76 % had no effect on fecundity at 25–26 °C. Conclusions: We discuss the implications of these results on tsetse SIT-based control programmes. (Résumé d'auteur

    Competitiveness and survival of two strains of Glossina palpalis gambiensis in an urban area of Senegal

    Get PDF
    Background : In the Niayes area, located in the west of Senegal, only one tsetse species, Glossina palpalis gambiensis Vanderplank (Diptera: Glossinidae) was present. The Government of Senegal initiated and implemented an elimination programme in this area that included a sterile insect technique (SIT) component. The G. p. gambiensis strain (BKF) mass-reared at the Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES) in Burkina Faso was used for the SIT component. Methodology/principal findings: Studies conducted in 2011 in four localities in the Niayes area (Pout, Sébikotane, Diacksao Peul and the Parc de Hann) showed that the BKF strain demonstrated inferior survival in the ecosystem of the Parc de Hann, a forested area in the city centre of the capital Dakar. Therefore, G. p. gambiensis flies from the Niayes area (SEN strain) were colonized. Here we compared the competitiveness and survival of the two strains (BKF and SEN) in the Parc de Hann. Released sterile males of the SEN colony showed a daily mortality rate of 0.08 (SD 0.08) as compared with 0.14 (SD 0.08) for the BKF flies but the difference was not significant (p-value = 0.14). However, the competitiveness of the SEN males was lower (0.14 (SD 0.10)) as compared with that of the BKF males (0.76 (SD 0.11)) (p-value < 10−3). Conclusions/significance: Based on the results of this study, it can be concluded that the BKF strain will remain the main strain to be used in the elimination programme. Despite the slightly longer survival of the SEN males in the Parc de Hann, the superior competitiveness of the BKF males is deemed more important for the SIT component, as their shorter survival rates can be easily compensated for by more frequent fly releases. (Résumé d'auteur

    Prevalence of Trypanosoma and Sodalis in wild populations of tsetse flies and their impact on sterile insect technique programmes for tsetse eradication

    Get PDF
    The sterile insect technique (SIT) is an environment friendly and sustainable method to manage insect pests of economic importance through successive releases of sterile irradiated males of the targeted species to a defined area. A mating of a sterile male with a virgin wild female will result in no offspring, and ultimately lead to the suppression or eradication of the targeted population. Tsetse flies, vectors of African Trypanosoma, have a highly regulated and defined microbial fauna composed of three bacterial symbionts that may have a role to play in the establishment of Trypanosoma infections in the flies and hence, may influence the vectorial competence of the released sterile males. Sodalis bacteria seem to interact with Trypanosoma infection in tsetse flies. Field-caught tsetse flies of ten different taxa and from 15 countries were screened using PCR to detect the presence of Sodalis and Trypanosoma species and analyse their interaction. The results indicate that the prevalence of Sodalis and Trypanosoma varied with country and tsetse species. Trypanosome prevalence was higher in east, central and southern African countries than in west African countries. Tsetse fly infection rates with Trypanosoma vivax and T. brucei sspp were higher in west African countries, whereas tsetse infection with T. congolense and T. simiae, T. simiae (tsavo) and T. godfreyi were higher in east, central and south African countries. Sodalis prevalence was high in Glossina morsitans morsitans and G. pallidipes but absent in G. tachinoides. Double and triple infections with Trypanosoma taxa and coinfection of Sodalis and Trypanosoma were rarely observed but it occurs in some taxa and locations. A significant Chi square value (< 0.05) seems to suggest that Sodalis and Trypanosoma infection correlate in G. palpalis gambiensis, G. pallidipes and G. medicorum. Trypanosoma infection seemed significantly associated with an increased density of Sodalis in wild G. m. morsitans and G. pallidipes flies, however, there was no significant impact of Sodalis infection on trypanosome density.The Joint FAO/IAEA Insect Pest Control Subprogramme.https://www.nature.com/srepVeterinary Tropical Disease

    The COMBAT project : controlling and progressively minimizing the burden of vector-borne animal trypanosomosis in Africa

    Get PDF
    Vector-borne diseases affecting livestock have serious impacts in Africa. Trypanosomosis is caused by parasites transmitted by tsetse flies and other blood-sucking Diptera. The animal form of the disease is a scourge for African livestock keepers, is already present in Latin America and Asia, and has the potential to spread further. A human form of the disease also exists, known as human African trypanosomosis or sleeping sickness. Controlling and progressively minimizing the burden of animal trypanosomosis (COMBAT) is a four year research and innovation project funded by the European Commission, whose ultimate goal is to reduce the burden of animal trypanosomosis (AT) in Africa. The project builds on the progressive control pathway (PCP), a risk-based, step-wise approach to disease reduction or elimination. COMBAT will strengthen AT control and prevention by improving basic knowledge of AT, developing innovative control tools, reinforcing surveillance, rationalizing control strategies, building capacity, and raising awareness. Knowledge gaps on disease epidemiology, vector ecology and competence, and biological aspects of trypanotolerant livestock will be addressed. Environmentally friendly vector control technologies and more effective and adapted diagnostic tools will be developed. Surveillance will be enhanced by developing information systems, strengthening reporting, and mapping and modelling disease risk in Africa and beyond. The socio-economic burden of AT will be assessed at a range of geographical scales. Guidelines for the PCP and harmonized national control strategies and roadmaps will be developed. Gender equality and ethics will be pivotal in all project activities. The COMBAT project benefits from the expertise of African and European research institutions, national veterinary authorities, and international organizations. The project consortium comprises 21 participants, including a geographically balanced representation from 13 African countries, and it will engage a larger number of AT-affected countries through regional initiatives.The European Union’s Horizon 2020 research and innovation programme.https://open-research-europe.ec.europa.euam2023Veterinary Tropical Disease

    Climate, cattle rearing systems and African Animal Trypanosomosis risk in Burkina Faso.

    Get PDF
    BACKGROUND: In sub-Saharan countries infested by tsetse flies, African Animal Trypanosomosis (AAT) is considered as the main pathological constraint to cattle breeding. Africa has known a strong climatic change and its population was multiplied by four during the last half-century. The aim of this study was to characterize the impact of production practices and climate on tsetse occurrence and abundance, and the associated prevalence of AAT in Burkina Faso. METHODOLOGY/PRINCIPAL FINDINGS: Four sites were selected along a South-north transect of increasing aridity. The study combines parasitological and entomological surveys. For the parasitological aspect, blood samples were collected from 1,041 cattle selected through a stratified sampling procedure including location and livestock management system (long transhumance, short transhumance, sedentary). Parasitological and serological prevalence specific to livestock management systems show a gradual increase from the Sahelian to the Sudano-Guinean area (P<0.05). Livestock management system had also a significant impact on parasitological prevalence (P<0.05). Tsetse diversity, apparent densities and their infection rates overall decreased with aridity, from four species, an apparent density of 53.1 flies/trap/day and an infection rate of 13.7% to an absence at the northern edge of the transect, where the density and diversity of other biting flies were on the contrary highest (p<0.001). CONCLUSIONS/SIGNIFICANCE: The climatic pressure clearly had a negative impact on tsetse abundance and AAT risk. However, the persistency of tsetse habitats along the Mouhoun river loop maintains a high risk of cyclical transmission of T. vivax. Moreover, an "epidemic mechanical livestock trypanosomosis" cycle is likely to occur in the northern site, where trypanosomes are brought in by cattle transhuming from the tsetse infested area and are locally transmitted by mechanical vectors. In Burkina Faso, the impact of tsetse thus extends to a buffer area around their distribution belt, corresponding to the herd transhumance radius
    corecore