208 research outputs found

    Comparison of Pedagogy and Andragogy teaching methods

    Get PDF
    Pedagogy can be a highly effective approach to teaching and learning for children and young learners. The key principles of pedagogy, such as teacher-directed learning, scaffolding, and active learning, are well-suited to the developmental needs and interests of young learners. Andragogy, on the other hand, is the study of teaching adults, and it focuses on the learner as the primary source of knowledge and information. In andragogy, the learner takes responsibility for their own learning, setting their own goals and objectives, and choosing their own learning activities. This approach assumes that adults are self-directed learners, and that their life experiences are a valuable resource for learning

    Efficient and stable air-processed ternary organic solar cells incorporating gallium-porphyrin as electron cascade material

    Get PDF
    Two gallium porphyrins, a tetraphenyl GaCl porphyrin, termed as (TPP)GaCl, and an octaethylporphyrin GaCl porphyrin, termed as (OEP)GaCl, were synthesized to use as an electron cascade in ternary organic bulk heterojunction films. A perfect matching of both gallium porphyrins’ energy levels with that of poly(3-hexylthiophene-2,5-diyl) (P3HT) or poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) polymer donor and the 6,6-phenyl C71 butyric acid methyl ester (PCBM) fullerene acceptor, forming an efficient cascade system that could facilitate electron transfer between donor and acceptor, was demonstrated. Therefore, ternary organic solar cells (OSCs) using the two porphyrins in various concentrations were fabricated where a performance enhancement was obtained. In particular, (TPP)GaCl-based ternary OSCs of low concentration (1:0.05 vv%) exhibited a ~17% increase in the power conversion efficiency (PCE) compared with the binary device due to improved exciton dissociation, electron transport and reduced recombination. On the other hand, ternary OSCs with a high concentration of (TPP)GaCl (1:0.1 vv%) and (OEP)GaCl (1:0.05 and 1:0.1 vv%) showed the poorest efficiencies due to very rough nanomorphology and suppressed crystallinity of ternary films when the GaCl porphyrin was introduced to the blend, as revealed from X-ray diffraction (XRD) and atomic force microscopy (AFM). The best performing devices also exhibited improved photostability when exposed to sunlight illumination for a period of 8 h than the binary OSCs, attributed to the suppressed photodegradation of the ternary (TPP)GaCl 1:0.05-based photoactive film

    Optimization of the hydrogen response characteristics of halogen-doped SnO2

    Get PDF
    The increasing demand for efficient sensing devices with facile low-cost fabrication has attracted a lot of scientific research effort in the recent years. In particular, the scientific community aims to develop new candidate materials suitable for energy-related devices, such as sensors and photovoltaics or clean energy applications such as hydrogen production. One of the most prominent methods to improve materials functionality and performance is doping key device component(s). This paper aims to examine in detail, both from a theoretical and an experimental point of view, the effect of halogen doping on the properties of tin dioxide (SnO2) and provide a deeper understanding on the atomic scale mechanisms with respect to their potential applications in sensors. Density Functional Theory (DFT) calculations are used to examine the defect processes, the electronic structure and the thermodynamical properties of halogen-doped SnO2. Calculations show that halogen doping reduces the oxide bandgap by creating gap states which agree well with our experimental data. The crystallinity and morphology of the samples is also altered. The synergy of these effects results in a significant improvement of the gas-sensing response. This work demonstrates for the first time a complete theoretical and experimental characterization of halogen-doped SnO2 and investigates the possible responsible mechanisms. Our results illustrate that halogen doping is a low-cost method that significantly enhances the room temperature response of SnO2

    Cardiac dysfunction in cancer survivors unmasked during exercise

    Get PDF
    Introduction: The cardiac dysfunction associated with anthracycline-based chemotherapy cancer treatment can exist sub-clinically for decades before overt presentation. Stress echocardiography, the measurement of left ventricular (LV) deformation and arterial haemodynamic evaluation have separately been used to identify sub-clinical cardiovascular (CV) dysfunction in several patient groups including those with hypertension and diabetes. The purpose of the present cross-sectional study was to determine whether the combination of these techniques could be used to improve the characterisation of sub-clinical CV dysfunction in long-term cancer survivors previously treated with anthracyclines. Materials and methods: Thirteen long-term cancer survivors (36±10 years) with prior anthracycline exposure (11±8 years post-treatment) and 13 age-matched controls were recruited. Left ventricular structure, function and deformation were assessed using echocardiography. Augmentation index was used to quantify arterial haemodynamic load and was measured using applanation tonometry. Measurements were taken at rest and during two stages of low-intensity incremental cycling.Results: At rest, both groups had comparable global LV systolic, diastolic and arterial function (all P>0.05), however longitudinal deformation was significantly lower in cancer survivors (-18±2 v -20±2, P<0.05). During exercise this difference between groups persisted and further differences were uncovered with significantly lower apical circumferential deformation in the cancer survivors (-24±5 v -29±5, -29±5 v 35±8 for first and second stage of exercise respectively, both P<0.05). Conclusion: In contrast to resting echocardiography the measurement of LV deformation at rest and during exercise provides a more comprehensive characterisation of sub-clinical LV dysfunction. Larger studies are required to determine the clinical relevance of these preliminary findings

    Core-shell carbon-polymer quantum dot passivation for near infrared perovskite light emitting diodes

    Get PDF
    High-performance perovskite light-emitting diodes (PeLEDs) require a high quality perovskite emitter and appropriate charge transport layers to facilitate charge injection and transport within the device. Solution-processed n-type metal oxides represent a judicious choice for the electron transport layer (ETL); however, they don't always present suitable surface properties and energetics in order to be compatible with the perovskite emitter. Moreover, the emitter itself exhibits poor nanomorphology and defect traps that compromise the device performance. Here we modulate the surface properties and interface energetics of the tin oxide (SnO2) ETL with the perovskite emitter by using an amino functionalized difluoro{2-[1-(3,5-dimethyl-2H-pyrrol-2-ylidene-N)ethyl]-3,5-dimethyl-1H-pyrrolato-N}boron (BDP) compound and passivate the defects present in the perovskite with carbon-polymer core-shell quantum dots (PCDs) inserted into the perovskite precursor. Both these approaches synergistically improve the perovskite layer nanomorphology and enhance the radiative recombination. These properties resulted in the fabrication of near infrared (NIR) PeLEDs based on formamidinium lead iodide (FAPbI3) with a high radiance of 92 W sr-1 m-2, an external quantum efficiency (EQE) of 14% and reduced efficiency roll-off

    Preparation of hydrogen, fluorine and chlorine doped and co-doped titanium dioxide photocatalysts: a theoretical and experimental approach

    Get PDF
    Titanium dioxide (TiO2) has a strong photocatalytic activity in the ultra-violet part of the spectrum combined with excellent chemical stability and abundance. However, its photocatalytic efficiency is prohibited by limited absorption within the visible range derived from its wide band gap value and the presence of charge trapping states located at the band edges, which act as electron-hole recombination centers. Herein, we modify the band gap and improve the optical properties of TiO2via co-doping with hydrogen and halogen. The present density functional theory (DFT) calculations indicate that hydrogen is incorporated in interstitial sites while fluorine and chlorine can be inserted both as interstitial and oxygen substitutional defects. To investigate the synergy of dopants in TiO2 experimental characterization techniques such as Fourier transform infrared (FTIR), X-ray diffraction (XRD), X-ray and ultra-violet photoelectron spectroscopy (XPS/UPS), UV-Vis absorption and scanning electron microscopy (SEM) measurements, have been conducted. The observations suggest that the oxide’s band gap is reduced upon halogen doping, particularly for chlorine, making this material promising for energy harvesting devices. The studies on hydrogen production ability of these materials support the enhanced hydrogen production rates for chlorine doped (Cl:TiO2) and hydrogenated (H:TiO2) oxides compared to the pristine TiO2 reference
    • …
    corecore