11 research outputs found

    Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells

    Get PDF
    Prostaglandins (PGs) can enhance or suppress inflammation by acting on different receptors expressed by hematopoietic and nonhematopoietic cells. Prostaglandin D2 binds to the D prostanoid (DP)1 and DP2 receptor and is seen as a critical mediator of asthma causing vasodilation, bronchoconstriction, and inflammatory cell influx. Here we show that inhalation of a selective DP1 agonist suppresses the cardinal features of asthma by targeting the function of lung dendritic cells (DCs). In mice treated with DP1 agonist or receiving DP1 agonist-treated DCs, there was an increase in Foxp3+ CD4+ regulatory T cells that suppressed inflammation in an interleukin 10–dependent way. These effects of DP1 agonist on DCs were mediated by cyclic AMP–dependent protein kinase A. We furthermore show that activation of DP1 by an endogenous ligand inhibits airway inflammation as chimeric mice with selective hematopoietic loss of DP1 had strongly enhanced airway inflammation and antigen-pulsed DCs lacking DP1 were better at inducing airway T helper 2 responses in the lung. Triggering DP1 on DCs is an important mechanism to induce regulatory T cells and to control the extent of airway inflammation. This pathway could be exploited to design novel treatments for asthma

    Prostaglandin D2 inhibits airway dendritic cell migration and function in steady state conditions by selective activation of the D prostanoid receptor 1

    Get PDF
    PGD(2) is the major mediator released by mast cells during allergic responses, and it acts through two different receptors, the D prostanoid receptor 1 (DP1) and DP2, also known as CRTH2. Recently, it has been shown that PGD(2) inhibits the migration of epidermal Langerhans cells to the skin draining lymph nodes (LNs) and affects the subsequent cutaneous inflammatory reaction. However, the role of PGD(2) in the pulmonary immune response remains unclear. Here, we show that the intratracheal instillation of FITC-OVA together with PGD(2) inhibits the migration of FITC(+) lung DC to draining LNs. This process is mimicked by the DP1 agonist BW245C, but not by the DP2 agonist DK-PGD(2). The ligation of DP1 inhibits the migration of FITC-OVA(+) DCs only temporarily, but still inhibits the proliferation of adoptively transferred, OVA-specific, CFSE-labeled, naive T cells in draining LNs. These T cells produced lower amounts of the T cell cytokines IL-4, IL-10, and IFN-gamma compared with T cells from mice that received FITC-OVA alone. Taken together, our data suggest that the activation of DP receptor by PGD(2) may represent a pathway to control airway DC migration and to limit the activation of T cells in the LNs under steady state conditions, possibly contributing to homeostasis in th

    Essential Role of Lung Plasmacytoid Dendritic Cells in Preventing Asthmatic Reactions to Harmless Inhaled Antigen

    Get PDF
    Tolerance is the usual outcome of inhalation of harmless antigen, yet T helper (Th) type 2 cell sensitization to inhaled allergens induced by dendritic cells (DCs) is common in atopic asthma. Here, we show that both myeloid (m) and plasmacytoid (p) DCs take up inhaled antigen in the lung and present it in an immunogenic or tolerogenic form to draining node T cells. Strikingly, depletion of pDCs during inhalation of normally inert antigen led to immunoglobulin E sensitization, airway eosinophilia, goblet cell hyperplasia, and Th2 cell cytokine production, cardinal features of asthma. Furthermore, adoptive transfer of pDCs before sensitization prevented disease in a mouse asthma model. On a functional level, pDCs did not induce T cell division but suppressed the generation of effector T cells induced by mDCs. These studies show that pDCs provide intrinsic protection against inflammatory responses to harmless antigen. Therapies exploiting pDC function might be clinically effective in preventing the development of asthma

    Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells

    Get PDF
    Alum (aluminum hydroxide) is the most widely used adjuvant in human vaccines, but the mechanism of its adjuvanticity remains unknown. In vitro studies showed no stimulatory effects on dendritic cells (DCs). In the absence of adjuvant, Ag was taken up by lymph node (LN)–resident DCs that acquired soluble Ag via afferent lymphatics, whereas after injection of alum, Ag was taken up, processed, and presented by inflammatory monocytes that migrated from the peritoneum, thus becoming inflammatory DCs that induced a persistent Th2 response. The enhancing effects of alum on both cellular and humoral immunity were completely abolished when CD11c+ monocytes and DCs were conditionally depleted during immunization. Mechanistically, DC-driven responses were abolished in MyD88-deficient mice and after uricase treatment, implying the induction of uric acid. These findings suggest that alum adjuvant is immunogenic by exploiting “nature's adjuvant,” the inflammatory DC through induction of the endogenous danger signal uric acid

    The lung vascular filter as a site of immune induction for T cell responses to large embolic antigen

    Get PDF
    The bloodstream is an important route of dissemination of invading pathogens. Most of the small bloodborne pathogens, like bacteria or viruses, are filtered by the spleen or liver sinusoids and presented to the immune system by dendritic cells (DCs) that probe these filters for the presence of foreign antigen (Ag). However, larger pathogens, like helminths or infectious emboli, that exceed 20 µm are mostly trapped in the vasculature of the lung. To determine if Ag trapped here can be presented to cells of the immune system, we used a model of venous embolism of large particulate Ag (in the form of ovalbumin [OVA]-coated Sepharose beads) in the lung vascular bed. We found that large Ags were presented and cross-presented to CD4 and CD8 T cells in the mediastinal lymph nodes (LNs) but not in the spleen or liver-draining LNs. Dividing T cells returned to the lungs, and a short-lived infiltrate consisting of T cells and DCs formed around trapped Ag. This infiltrate was increased when the Toll-like receptor 4 was stimulated and full DC maturation was induced by CD40 triggering. Under these conditions, OVA-specific cytotoxic T lymphocyte responses, as well as humoral immunity, were induced. The T cell response to embolic Ag was severely reduced in mice depleted of CD11chi cells or Ly6C/G+ cells but restored upon adoptive transfer of Ly6Chi monocytes. We conclude that the lung vascular filter represents a largely unexplored site of immune induction that traps large bloodborne Ags for presentation by monocyte-derived DCs

    Activation of Peroxisome Proliferator-Activated Receptor-Îł in Dendritic Cells Inhibits the Development of Eosinophilic Airway Inflammation in a Mouse Model of Asthma

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are activated by an array of polyunsaturated fatty acid derivatives, oxidized fatty acids, and phospholipids and are proposed to be important modulators of immune and inflammatory responses. Recently, we showed that activation of PPAR-Îł alters the maturation process of dendritic cells (DCs), the most potent antigen-presenting cells. In the present report, we investigated the possibility that, by targeting DCs, PPAR-Îł activation may be involved in the regulation of the pulmonary immune response to allergens. Using a model of sensitization, based on the intratracheal transfer of ovalbumin (OVA)-pulsed DCs, we show that rosiglitazone, a selective PPAR-Îł agonist, reduces the proliferation of Ag-specific T cells in the draining mediastinal lymph nodes but, surprisingly enough, dramatically increases the production of the immunoregulatory cytokine interleukin (IL)-10 by T cells, as compared to control mice sensitized with OVA-pulsed DCs. After aerosol challenge, the recruitment of eosinophils in the bronchoalveolar lavage fluids was strongly reduced compared to control mice. Finally, T cells from the mediastinal lymph nodes produced higher amounts of IL-10 and interferon-Îł. Inhibition of IL-10 activity with anti-IL-10R antibodies partly restored the inflammation. The specificity of the phenomenon was confirmed by treating OVA-pulsed DCs with ciglitazone, another PPAR-Îł agonist, and by using GW9662, a PPAR-Îł antagonist. Our data suggest that PPAR-Îł activation prevents induction of Th2-dependent eosinophilic airway inflammation and might contribute to immune homeostasis in the lung

    Accelerated vascular repair following percutaneous coronary intervention by capture of endothelial progenitor cells promotes regression of neointimal growth at long term follow-up: final results of the Healing II trial using an endothelial progenitor cell capturing stent (Genous R stent)

    No full text
    Aims: The study sought to define the long-term angiographic and clinical outcome of a bio-engineered stent, able to sequester endothelial progenitor cells (EPC) to the stent to promote the post-stenting vascular repair response.Methods and results: The HEALING-II was a multicentre, prospective registry, including 63 patients treated with the implantation of a Genous EPC capture stent. Serial quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) analysis was performed at 6 and 18 month. The 18 month composite MACE rate was 7.9%, whereas 6.3% clinically justified target lesion revascularisations were observed. Although patients received one month of clopidogrel, no (sub)acute or late angiographic stent thrombosis occurred. At 6 month follow-up, in-stent late luminal loss was 0.78+/-0.39 mm and percent in-stent volume obstruction was 22.9+/-13.7% (mean+/-sd). Serial angiographic and IVUS analyses were available in 30 event-free patients at post-procedure, 6 months and 18 months. From 6 months to 18 months follow-up, a significant late regression of neointimal hyperplasia was observed on QCA (late luminal loss 0.59+/-0.31, 24.4% reduction or 16.9% by matched serial analysis) and IVUS (percent in-stent volume obstruction 20.3+/-14.3%, 11.4% reduction or 9.6% by matched serial analysis). The relative increase in circulating EPC titers at long-term follow-up correlated with neointimal compaction in individual patients, suggestive of an EPC-mediated vascular repair response.Conclusions: The HEALING II study suggests that the EPC capture stent, aimed to stimulate the coronary vascular repair response, significantly promotes late regression of neointimal hyperplasia up to 18 months after stent implantatio

    Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function

    No full text
    Airway DCs play a crucial role in the pathogenesis of allergic asthma, and interfering with their function could constitute a novel form of therapy. The sphingosine 1-phosphate receptor agonist FTY720 is an oral immunosuppressant that retains lymphocytes in lymph nodes and spleen, thus preventing lymphocyte migration to inflammatory sites. The accompanying lymphopenia could be a serious side effect that would preclude the use of FTY720 as an antiasthmatic drug. Here we show in a murine asthma model that local application of FTY720 via inhalation prior to or during ongoing allergen challenge suppresses Th2-dependent eosinophilic airway inflammation and bronchial hyperresponsiveness without causing lymphopenia and T cell retention in the lymph nodes. Effectiveness of local treatment was achieved by inhibition of the migration of lung DCs to the mediastinal lymph nodes, which in turn inhibited the formation of allergen-specific Th2 cells in lymph nodes. Also, FTY720-treated DCs were intrinsically less potent in activating naive and effector Th2 cells due to a reduced capacity to form stable interactions with T cells and thus to form an immunological synapse. These data support the concept that targeting the function of airway DCs with locall
    corecore