117 research outputs found
Recommended from our members
Exome and whole genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity
The incidence of esophageal adenocarcinoma (EAC) has risen 600% over the last 30 years. With a five-year survival rate of 15%, identification of new therapeutic targets for EAC is greatly important. We analyze the mutation spectra from whole exome sequencing of 149 EAC tumors/normal pairs, 15 of which have also been subjected to whole genome sequencing. We identify a mutational signature defined by a high prevalence of A to C transversions at AA dinucleotides. Statistical analysis of exome data identified significantly mutated 26 genes. Of these genes, four (TP53, CDKN2A, SMAD4, and PIK3CA) have been previously implicated in EAC. The novel significantly mutated genes include chromatin modifying factors and candidate contributors: SPG20, TLR4, ELMO1, and DOCK2. Functional analyses of EAC-derived mutations in ELMO1 reveal increased cellular invasion. Therefore, we suggest a new hypothesis about the potential activation of the RAC1 pathway to be a contributor to EAC tumorigenesis
Recommended from our members
Mutations causing medullary cystic kidney disease type 1 (MCKD1) lie in a large VNTR in MUC1 missed by massively parallel sequencing
While genetic lesions responsible for some Mendelian disorders can be rapidly discovered through massively parallel sequencing (MPS) of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple Mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing, and de novo assembly, we found that each of six MCKD1 families harbors an equivalent, but apparently independently arising, mutation in sequence dramatically underrepresented in MPS data: the insertion of a single C in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5-5 kb), GC-rich (>80%), coding VNTR in the mucin 1 gene. The results provide a cautionary tale about the challenges in identifying genes responsible for Mendelian, let alone more complex, disorders through MPS
Mutations causing medullary cystic kidney disease type 1 (MCKD1) lie in a large VNTR in MUC1 missed by massively parallel sequencing
While genetic lesions responsible for some Mendelian disorders can be rapidly discovered through massively parallel sequencing (MPS) of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple Mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing, and de novo assembly, we found that each of six MCKD1 families harbors an equivalent, but apparently independently arising, mutation in sequence dramatically underrepresented in MPS data: the insertion of a single C in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5-5 kb), GC-rich (>80%), coding VNTR in the mucin 1 gene. The results provide a cautionary tale about the challenges in identifying genes responsible for Mendelian, let alone more complex, disorders through MPS
Recommended from our members
Whole exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer
Comprehensive analyses of cancer genomes promise to inform prognoses and precise cancer treatments. A major barrier, however, is inaccessibility of metastatic tissue. A potential solution is to characterize circulating tumor cells (CTCs), but this requires overcoming the challenges of isolating rare cells and sequencing low-input material. Here we report an integrated process to isolate, qualify and sequence whole exomes of CTCs with high fidelity, using a census-based sequencing strategy. Power calculations suggest that mapping of >99.995% of the standard exome is possible in CTCs. We validated our process in two prostate cancer patients including one for whom we sequenced CTCs, a lymph node metastasis and nine cores of the primary tumor. Fifty-one of 73 CTC mutations (70%) were observed in matched tissue. Moreover, we identified 10 early-trunk and 56 metastatic-trunk mutations in the non-CTC tumor samples and found 90% and 73% of these, respectively, in CTC exomes. This study establishes a foundation for CTC genomics in the clinic
Recommended from our members
The genetic landscape of high-risk neuroblastoma
Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%1. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 cases using a combination of whole exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per megabase (0.48 non-silent), and remarkably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, an additional 7.1% had focal deletions), MYCN (1.7%, a recurrent p.Pro44Leu alteration), and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1, and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies reliant upon frequently altered oncogenic drivers
Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes
Detection of somatic mutations in human leukocyte antigen (HLA) genes using whole-exome sequencing (WES) is hampered by the high polymorphism of the HLA loci, which prevents alignment of sequencing reads to the human reference genome. We describe a computational pipeline that enables accurate inference of germline alleles of class I HLA-A, B and C genes and subsequent detection of mutations in these genes using the inferred alleles as a reference. Analysis of WES data from 7,930 pairs of tumor and healthy tissue from the same patient revealed 298 nonsilent HLA mutations in tumors from 266 patients. These 298 mutations are enriched for likely functional mutations, including putative loss-of-function events. Recurrence of mutations suggested that these \u27hotspot\u27 sites were positively selected. Cancers with recurrent somatic HLA mutations were associated with upregulation of signatures of cytolytic activity characteristic of tumor infiltration by effector lymphocytes, supporting immune evasion by altered HLA function as a contributory mechanism in cancer
Integrated genomic analyses of ovarian carcinoma
A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients’ lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.National Institutes of Health (U.S.) (Grant U54HG003067)National Institutes of Health (U.S.) (Grant U54HG003273)National Institutes of Health (U.S.) (Grant U54HG003079)National Institutes of Health (U.S.) (Grant U24CA126543)National Institutes of Health (U.S.) (Grant U24CA126544)National Institutes of Health (U.S.) (Grant U24CA126546)National Institutes of Health (U.S.) (Grant U24CA126551)National Institutes of Health (U.S.) (Grant U24CA126554)National Institutes of Health (U.S.) (Grant U24CA126561)National Institutes of Health (U.S.) (Grant U24CA126563)National Institutes of Health (U.S.) (Grant U24CA143882)National Institutes of Health (U.S.) (Grant U24CA143731)National Institutes of Health (U.S.) (Grant U24CA143835)National Institutes of Health (U.S.) (Grant U24CA143845)National Institutes of Health (U.S.) (Grant U24CA143858)National Institutes of Health (U.S.) (Grant U24CA144025)National Institutes of Health (U.S.) (Grant U24CA143866)National Institutes of Health (U.S.) (Grant U24CA143867)National Institutes of Health (U.S.) (Grant U24CA143848)National Institutes of Health (U.S.) (Grant U24CA143843)National Institutes of Health (U.S.) (Grant R21CA135877
Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing
Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5–5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.National Institutes of Health (U.S.) (Intramural Research Program)National Human Genome Research Institute (U.S.)Charles University (program UNCE 204011)Charles University (program PRVOUK-P24/LF1/3)Czech Republic. Ministry of Education, Youth, and Sports (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant LH12015)National Institutes of Health (U.S.) (Harvard Digestive Diseases Center, grant DK34854
Characterizing the cancer genome in lung adenocarcinoma
Somatic alterations in cellular DNA underlie almost all human cancers(1). The prospect of targeted therapies(2) and the development of high-resolution, genome-wide approaches(3-8) are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumours ( n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in similar to 12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 ( NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62944/1/nature06358.pd
Somatic mutations affect key pathways in lung adenocarcinoma
Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well- classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers - including NF1, APC, RB1 and ATM - and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.National Human Genome Research InstituteWe thank A. Lash, M.F. Zakowski, M.G. Kris and V. Rusch for intellectual contributions, and many members of the Baylor Human Genome Sequencing Center, the Broad Institute of Harvard and MIT, and the Genome Center at Washington University for support. This work was funded by grants from the National Human Genome Research Institute to E.S.L., R.A.G. and R.K.W.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62885/1/nature07423.pd
- …