971 research outputs found

    Genomic and proteomic profiling of responses to toxic metals in human lung cells.

    Get PDF
    Examining global effects of toxic metals on gene expression can be useful for elucidating patterns of biological response, discovering underlying mechanisms of toxicity, and identifying candidate metal-specific genetic markers of exposure and response. Using a 1,200 gene nylon array, we examined changes in gene expression following low-dose, acute exposures of cadmium, chromium, arsenic, nickel, or mitomycin C (MMC) in BEAS-2B human bronchial epithelial cells. Total RNA was isolated from cells exposed to 3 M Cd(II) (as cadmium chloride), 10 M Cr(VI) (as sodium dichromate), 3 g/cm2 Ni(II) (as nickel subsulfide), 5 M or 50 M As(III) (as sodium arsenite), or 1 M MMC for 4 hr. Expression changes were verified at the protein level for several genes. Only a small subset of genes was differentially expressed in response to each agent: Cd, Cr, Ni, As (5 M), As (50 M), and MMC each differentially altered the expression of 25, 44, 31, 110, 65, and 16 individual genes, respectively. Few genes were commonly expressed among the various treatments. Only one gene was altered in response to all four metals (hsp90), and no gene overlapped among all five treatments. We also compared low-dose (5 M, noncytotoxic) and high-dose (50 M, cytotoxic) arsenic treatments, which surprisingly, affected expression of almost completely nonoverlapping subsets of genes, suggesting a threshold switch from a survival-based biological response at low doses to a death response at high doses

    Paleozoic Evolution of the Yukon-Tanana Terrane of the North American Cordillera, NW British Columbia

    Get PDF
    The origins and primary relationships between tectono-stratigraphic units are fundamental to the terrane concept in accretionary orogens, but they are challenging to assess in metamorphic terranes. In NW British Columbia, three tectonically bounded metamorphic suites of the Yukon-Tanana terrane formed in distinct tectonic settings, based on high-spatial-resolution geochronology and immobile trace-element geochemistry. The Florence Range suite comprises late Neoproterozoic or younger to pre–latest Devonian metasedimentary rocks derived from continental crust, 360 ± 4 Ma calc-alkaline intermediate orthogneiss, and 357 ± 4 Ma amphibolite with oceanic-island basalt composition, consistent with rifting of a continental margin. The detrital signature is dominated by late Mesoproterozoic zircon, which indicates different sources than other parts of the Yukon-Tanana terrane. The Boundary Ranges suite comprises pre–Late Devonian metasedimentary rocks derived in part from a mafic source, amphibolite derived from subduction-zone metasomatized mantle, and 369 ± 4 Ma to 367 ± 7 Ma calc-alkaline felsic to intermediate orthogneiss. The Whitewater suite comprises meta-chert, graphite-rich metapelite, and amphibolite with back-arc basin basalt composition consistent with an anoxic basin near a volcanic source. Our data indicate that the Florence Range and Boundary Ranges suites were separate until at least the Early Mississippian and may have formed a composite terrane since the Permian, whereas the relationship with the Whitewater suite is uncertain. We compare the Paleozoic evolution of the Yukon-Tanana terrane in NW British Columbia with several modern analogues in the west and southwest Pacific Ocean

    COMPLEXO: identifying the missing heritability of breast cancer via next generation collaboration

    Get PDF
    published_or_final_versio

    Neuropeptidergic Signaling Partitions Arousal Behaviors in Zebrafish

    Get PDF
    Animals modulate their arousal state to ensure that their sensory responsiveness and locomotor activity match environmental demands. Neuropeptides can regulate arousal, but studies of their roles in vertebrates have been constrained by the vast array of neuropeptides and their pleiotropic effects. To overcome these limitations, we systematically dissected the neuropeptidergic modulation of arousal in larval zebrafish. We quantified spontaneous locomotor activity and responsiveness to sensory stimuli after genetically induced expression of seven evolutionarily conserved neuropeptides, including adenylate cyclase activating polypeptide 1b (adcyap1b), cocaine-related and amphetamine-related transcript (cart), cholecystokinin (cck), calcitonin gene-related peptide (cgrp), galanin, hypocretin, and nociceptin. Our study reveals that arousal behaviors are dissociable: neuropeptide expression uncoupled spontaneous activity from sensory responsiveness, and uncovered modality-specific effects upon sensory responsiveness. Principal components analysis and phenotypic clustering revealed both shared and divergent features of neuropeptidergic functions: hypocretin and cgrp stimulated spontaneous locomotor activity, whereas galanin and nociceptin attenuated these behaviors. In contrast, cart and adcyap1b enhanced sensory responsiveness yet had minimal impacts on spontaneous activity, and cck expression induced the opposite effects. Furthermore, hypocretin and nociceptin induced modality-specific differences in responsiveness to changes in illumination. Our study provides the first systematic and high-throughput analysis of neuropeptidergic modulation of arousal, demonstrates that arousal can be partitioned into independent behavioral components, and reveals novel and conserved functions of neuropeptides in regulating arousal

    18 F-MK-6240 tau-PET in genetic frontotemporal dementia

    Get PDF
    Tau is one of several proteins associated with frontotemporal dementia. While knowing which protein is causing a patient\u27s disease is crucial, no biomarker currently exists for identifying tau in vivo in frontotemporal dementia. The objective of this study was to investigate the potential for the promising 18F-MK-6240 PET tracer to bind to tau in vivo in genetic frontotemporal dementia. We enrolled subjects with genetic frontotemporal dementia, who constitute an ideal population for testing because their pathology is already known based on their mutation. Ten participants (three with symptomatic P301L and R406W MAPT mutations expected to show tau binding, three with presymptomatic MAPT mutations and four with non-tau mutations who acted as disease controls) underwent clinical characterization, tau-PET scanning with 18F-MK-6240, amyloid-PET imaging with 18F-NAV-4694 to rule out confounding Alzheimer\u27s pathology, and high-resolution structural MRI. Tau-PET scans of all three symptomatic MAPT carriers demonstrated at least mild 18F-MK-6240 binding in expected regions, with particularly strong binding in a subject with an R406W MAPT mutation (known to be associated with Alzheimer\u27s like neurofibrillary tangles). Two asymptomatic MAPT carriers estimated to be 5 years from disease onset both showed modest 18F-MK-6240 binding, while one ∼30 years from disease onset did not exhibit any binding. Additionally, four individuals with symptomatic frontotemporal dementia caused by a non-tau mutation were scanned (two C9orf72; one GRN; one VCP): 18F-MK-6240 scans were negative for three subjects, while one advanced C9orf72 case showed minimal regionally non-specific binding. All 10 amyloid-PET scans were negative. Furthermore, a general linear model contrasting genetic frontotemporal dementia subjects to a set of 83 age-matched controls showed significant binding only in the MAPT carriers in selected frontal, temporal and subcortical regions. In summary, our findings demonstrate mild but significant binding of MK-6240 in amyloid-negative P301L and R406W MAPT mutation subjects, with higher standardized uptake value ratio in the R406W mutation associated with the presence of NFTs, and little non-specific binding. These results highlight that a positive 18F-MK-6240 tau-PET does not necessarily imply a diagnosis of Alzheimer\u27s disease and point towards a potential use for 18F-MK-6240 as a biomarker in certain tauopathies beyond Alzheimer\u27s, although further patient recruitment and autopsy studies will be necessary to determine clinical applicability

    Abnormal metabolic network activity in REM sleep behavior disorder

    Get PDF
    OBJECTIVE: To determine whether the Parkinson disease-related covariance pattern (PDRP) expression is abnormally increased in idiopathic REM sleep behavior disorder (RBD) and whether increased baseline activity is associated with greater individual risk of subsequent phenoconversion. METHODS: For this cohort study, we recruited 2 groups of RBD and control subjects. Cohort 1 comprised 10 subjects with RBD (63.5 +/- 9.4 years old) and 10 healthy volunteers (62.7 +/- 8.6 years old) who underwent resting-state metabolic brain imaging with (18)F-fluorodeoxyglucose PET. Cohort 2 comprised 17 subjects with RBD (68.9 +/- 4.8 years old) and 17 healthy volunteers (66.6 +/- 6.0 years old) who underwent resting brain perfusion imaging with ethylcysteinate dimer SPECT. The latter group was followed clinically for 4.6 +/- 2.5 years by investigators blinded to the imaging results. PDRP expression was measured in both RBD groups and compared with corresponding control values. RESULTS: PDRP expression was elevated in both groups of subjects with RBD (cohort 1: p \u3c 0.04; cohort 2: p \u3c 0.005). Of the 17 subjects with long-term follow-up, 8 were diagnosed with Parkinson disease or dementia with Lewy bodies; the others did not phenoconvert. For individual subjects with RBD, final phenoconversion status was predicted using a logistical regression model based on PDRP expression and subject age at the time of imaging (r(2) = 0.64, p \u3c 0.0001). CONCLUSIONS: Latent network abnormalities in subjects with idiopathic RBD are associated with a greater likelihood of subsequent phenoconversion to a progressive neurodegenerative syndrome
    corecore