163 research outputs found

    Hydrologie et dynamique hydroécologique des cours d'eau

    Get PDF
    La dynamique Ă©cologique des cours d'eau est fortement liĂ©e Ă  leur rĂ©gime hydrologique qui en façonne la structure morphologique Ă  l'occasion de crues caractĂ©ristiques mais qui en rythme Ă©galement l'habitat physique quotidien. L'hydrologie joue aussi un rĂŽle majeur dans la modulation saisonniĂšre des caractĂ©ristiques thermiques et chimiques, autres paramĂštres abiotiques fondamentaux.Deux exemples concrets pris dans un cours d'eau alpin, la SĂ©veraisse, dĂ©montrent l'intĂ©rĂȘt d'une Ă©troite connexion entre l'hydrologie et l'hydroĂ©cologie.La quantification de l'habitat des poissons repose sur la mĂ©thode des microhabitats dont les principes ont Ă©tĂ© dĂ©finis par l'US Fish and Wildlife Service (Instream Flow Incremental Melhodology, USA, Fort Collins, Colorado). Cette mĂ©thodologie combine une description dĂ©taillĂ©e de stations reprĂ©sentatives du cours d'eau par mesure puis modĂ©lisation hydraulique des paramĂštres de l'habitat tels que la hauteur d'eau, la vitesse du courant et le substrat avec des modĂšles de prĂ©fĂ©rence de localisation des poissons Ă  diffĂ©rents stades vitaux. Des valeurs d'habitat potentiel par stade vital pour les diffĂ©rentes espĂšces Ă©tudiĂ©es (ici la truite Fano, Salmo frutta fario) sont calculĂ©es pour diffĂ©rents dĂ©bits.Des chroniques hydrologiques de qualitĂ© sont par consĂ©quent nĂ©cessaires pour analyser la dynamique de l'habitat et en reconstituer l'historique.Les faibles dĂ©bits lors des Ă©tiages estivaux correspondent souvent Ă  un habitat limitant pour l'adulte de truite.D'autres Ă©pisodes hydrauliques critiques peuvent aussi exister. Ce fut le cas d'une crue sĂ©vĂšre de 7D m3/s sur la SĂ©veraisse dont l'effet biologique a pu ĂȘtre Ă©valué : iode diminution de la densitĂ© et de la biomasse de truite, structure de taille dĂ©sorganisĂ©e.Ces deux exemples soulignent l'importance des donnĂ©es hydrologiques en hydroĂ©cologie. Les Ă©vĂšnements exceptionnels, les Ă©pisodes structurants, les Ă©tiages, le rythme saisonnier des dĂ©bits dĂ©finissent la variabilitĂ© spatiale et temporelle de l'environnement aquatique, qu'il faut ensuite relier Ă  la dynamique biologique des hydrosystĂšmes.Hydrobiology studies deal more often with pollution problems in running waters than with those concerning stream regulation or deterioration of physical integrity of streams and rivers.It is more and more obvious that running water ecology is strongly related to hydrological characteristics which structure aquatic habitats.This latter challenge requieres a better understanding of the relationships between physical and biological parameters in particular in natural sites.We have summarized basic knowledge on the role of hydrological characteristics in aquatic systems :- Hydrology structures the morphology of the river bed and banks : bankfull discharge is often considered as responsible for hydraulic geometry of river channels in association with sediment load. The channel forming flows correspond to the flood discharges of frequency 1.5 to 2.0 years in most stream types.- Hydrology punctuates the dynamic of habitat available for aquatic biota. Physical habitat is discribed as a combination of spatial attributes : depth, current velocity, which are directly dependent on instantaneous discharge, and substrate and cover, resulting from the morphology discribed above. For example fish need different habitat for each physiological function to achieve a whole life cycle : reproduction and incubation of embryos, nutrition, test, and hiding. For the biologists, it is essential to develop knowledge on the autoecological requirements of species, in particular fishes in original ecological conditions.- Hydrology influences the thermal regime determining the oxygen concentration and several associated physico-chemical processes. Severe abiotic conditions could exist in periods of prolonged low flows.In a second part, we demonstrate the interest of a close collaboration between hydrological and hydroecological sciences with two concrete examples in an alpine stream, Severaisse (Hautes-Alpes).We use a quantitative methodology derived from the Instream Flow Incremental Methodoly (IFIM) of the Fish and Wildife Service (USA, Fort-Collins).One of the hypothesis of this methodology is that physical habitat plays a major rate in structuring fish populations, certain habitats acting as « bottlenecks ».In Severaisse, a representative study reach was chosen in a braided part of the stream, including each identified geomorphotogical unit.The physical characteristics are described on perpendicular transects (2 or 3 transects per unit). On representing homogeneous area, on each transect different measurements of depth, current velocity and substrate type are taken at irregular internals, with more points in heterogeneous portions. These points divide the represented area in cells. Topographic data complement the description and are necessary for hydraulic simulation at different discharges.The physical characteristics of the reaches are illustrated on maps, thus it is possible to follow the evolution of one parameter or a combination of them with changes in discharge (500 ls-1, 1 m3 s-1, 2 m3 s-1, 10 m3 s-1).Fish habitat requirements are obtained from preference curves for each physical parameter and life stage. The studied species is the brown trout (Salmo truffa Fario, L., 1759).The available habitat is then calculated cell by cell by converting physical data into suitability criteria. The resulting Wheighted Usable Area (WUA) for brown trout is then computed versus discharge.Adult WUA increases quickly between 0.5 and 1.0 m3 s-1 and is quite linear up to 10 m3 s-1 and a rapid decrease up to 4 m3 s-1.In Severaisse the low discharge is in winter with a monthly average stream flow of 2 m3 s-1 (period 1959-1985). This value corresponds to the maximum WUA (120 m2) for adult and to a medium WUA (300 m2 for a maximum of 450 m2 at 0.5 m3 s-1) for alevins and juveniles. The lower values for adult are often encountered.The summer average discharges, when fish are more physiologically active and in a period of active growth, give also good WUA (10 m3 s-1, 100 m2 for adult). When the hydrological events are close to the mean average interannual pattern, brown trout population tends to an equilibrium with a number of adults defined by the minimum WUA. This type of population structure has been observed in September 1986.This first example shows the importance of hydrological data which can be translated into habitat values for fish in two ways : real date by chronics or statistical approach (variability between years).The second example consist in a biological assessment of trout population before and after a sever flood (70 m3 s-1) in the same stream. The number of fish was depleted and the site structure severely impacted with no more fish greather than 240 mm (total lenght) and a drastic loss in 1 + year class.The flood resulted also in a morphological modification with displacement of the channel. During the flood, it was not possible to measure current velocities but it could be assumed that they were to high for fish to maintain. Fish might have drifted downstream with no recolonisation after 9 months.These two examples have emphasized the importance of hydrology in aquatic ecology. Flood regime pattern can be translated in potential habitat values for fish or other biota.This new habitat methodology can also improve the quality of impact studies, in particular chose dealing with stream regulation.Therefore stream flow variability and predictability are essential to define temporal and spatial patterns of lotic environments

    La restauration Ă©cologique du fleuve RhĂŽne sous le double regard du sociologue et de l'Ă©cologue

    Get PDF
    ActĂ© en 1998, le Programme dĂ©cennal de restauration hydraulique et Ă©cologique du RhĂŽne s'est fixĂ© comme objectif principal d'augmenter les dĂ©bits rĂ©servĂ©s dans les bras court-circuitĂ©s du fleuve. Cet objectif Ă©tait initialement pensĂ© comme une action de restauration Ă©cologique de milieux naturels fortement perturbĂ©s. Un processus concomitant de concertations a plusieurs fois dĂ©placĂ© l'intĂ©rĂȘt initial vers des projets d'Ă©laboration d'un territoire fluvial, puis d'un outil de gestion contre les crues. L'approche interdisciplinaire appliquĂ©e, entre sociologie et Ă©cologie, interroge la capacitĂ© d'une telle action environnementale Ă  aboutir Ă  des rĂ©sultats hybrides, relevant Ă  la fois de l'amĂ©lioration d'un Ă©cosystĂšme fluvial et d'un processus de gouvernance. / A ten-year physical and ecological restoration programme was defined for the Rhone River in 1998. Initially, one of its main objectives was to increase the minimum flow in several by-passed sections, with the clear goal of improving the fluvial habitat and the general ecological functioning of the river. A complex consultation process which brought together the hydropower industry, regional civil organisations, and local civil representatives was adopted to define more precisely the local measures to be taken. In the course of this process, the programme underwent a progressive change from purely ecological to more socially motivated outcomes such as improving amenity values and flood defence. We studied how increasing the minimum flow is a topic that can or cannot be discussed by the actors during the consultation process. For example, there is less discussion about the ecological value than about the economic value of the restoration programme between the hydropower industry and the local elected members. But, the various actors readily debate with the scientists about floods and sedimentary transport, linked with local knowledge. We applied a multidisciplinary approach, involving sociology and ecological sciences, to question the restoration programme and to analyse its hybrid results in terms of both the ecological and amenity values and at the same time to understand the governance process

    Les modÚles numériques des microhabitats des passons : application et nouveaux développements

    Get PDF
    L'estimation des stocks de poissons que peut abriter un secteur de cours d'eau non polluĂ© nĂ©cessite le calcul de sa capacitĂ© d'accueil en terme d'espace et de nourriture. Le premier volet a donnĂ© lieu aux Etats-Unis Ă  la mise en place de modĂšles de comportement de diffĂ©rentes espĂšces de poissons en fonction de variables physiques et de modĂšles hydrauliques dĂ©crivant l'Ă©volution temporelle de ces variables.Les hypothĂšses sous-jacentes sont discutĂ©es. Une modification du calcul de la perte de charge linĂ©aire est prĂ©conisĂ©e pour le modĂšle hydraulique dans le cas des riviĂšres Ă  truites, et l'utilisation de mĂ©thodes multivariĂ©es est proposĂ©e pour dĂ©crire avec une meilleure fiabilitĂ© les relations entre densitĂ©s de poissons et variables physiques des cours d'eau.Quelques cas d'application illustrent l'intĂ©rĂȘt de cette dĂ©marche pour rĂ©pondre Ă  des questions posĂ©es par les gestionnaires, tant en matiĂšre de prĂ©vision des impacts piscicoles des amĂ©nagements que d'optimisation des repeuplements.When evaluating the potential fish stock that an unpolluted reach of a stream can accomodate, the load capacity with regard to space and food available must be assessed. It is for this purpose that the Instream Flow Incremental Methodology has been developed in the United States.The assumptions on which behavioural and hydraulic models are based are discussed and modifications are suggested to improve the efficiency of this methodology.The use of the Manning equation to compute the energy loss is misleading in the case of trout streams and results from simulation are more reliable when using resistance equations designed for mountain rivers.For biological monitoring, multivariate data analysis is an interesting alternative to drawing one-dimensional preference curves. Qualitative variables can be used and redundancy or dependence between parameters no longer distorts the results. The relations between physical variables of streams and a probability of the presence of fish are estimated with greater accuracy.Examples of the application of this methodology are presented with a view to assessing the effects of water abstraction on fish populations and to optimizing the restocking of trout streams

    Chutzpah-driven export marketing: effects on export responsiveness and performance

    Get PDF
    As the business arena becomes more dynamic and global, organizations need to think in terms of breaking boundaries to be noticed and enhance performance. Chutzpah, defined as ‘laudable audacity or apparent effrontery that actually conceals a brave and often new approach to subject or endeavor’ (Schultz, 2007, p. 209) typifies an increasingly common way in which organizations break boundaries. While observed in a large variety of sectors (e.g., hospitality, law, sport, medicine, entertainment, biotechnology, politics, finance, public policy), Chutzpah remains under-studied. This paper examines the role of Chutzpah in driving responsiveness to export market and export performance. Based on theory development, in-depth interviews, and survey data from 149 Israeli exporters we find that Chutzpah has two facets, namely audacity and norm violation. Structural model results reveal that the former is positively related to responsiveness, while the latter is negatively related. Both affect export performance via responsiveness

    Le dĂ©bit Ă©lĂ©ment clĂ© de la vie des cours d’eau : bilan des altĂ©rations et des possibilitĂ©s de restauration

    Get PDF
    La gestion quantitative de la ressource en eau constitue l’un des principaux enjeux mondiaux tant du point de vue environnemental, Ă©conomique que sociologique. Les besoins en eau continuent de croĂźtre et la ressource est dĂ©jĂ  fortement utilisĂ©e. Les rĂ©gimes de dĂ©bits de la majoritĂ© des grands cours d’eau sont modifiĂ©s par des amĂ©nagements. Ces modifications ont des consĂ©quences fortes sur le fonctionnement Ă©cologique des eaux courantes. Les rĂ©gimes hydrologiques sont en effet reconnus comme la clĂ© de voĂ»te des hydrosystĂšmes. Leur variabilitĂ© est la base du fonctionnement morphologique des riviĂšres, du renouvellement des habitats et donc de la richesse Ă©cologique. Les altĂ©rations de ces rĂ©gimes dues aux usages directs de l’eau (irrigation, eau potable, hydroĂ©lectricitĂ©) ou aux modifications des bassins versants, touchent Ă  la fois les valeurs de bas dĂ©bits, les crues et les frĂ©quences de variations. Les enjeux de la restauration concernent non pas seulement le maintien de valeur de dĂ©bit minimum mais la dĂ©finition de vĂ©ritables rĂ©gimes hydrologiques rĂ©servĂ©s assurant les grandes fonctionnalitĂ©s des eaux courante au travers du respect d’un certain degrĂ© de variabilitĂ© des dĂ©bits. Actuellement, peu d’expĂ©riences de restauration hydrologique de cours d’eau sont conduites. Ces expĂ©riences doivent Ă  la fois s’appuyer sur l’identification des enjeux, sur des outils d’aide Ă  la dĂ©cision mais Ă©galement sur des suivis Ă  long terme de l’ensemble des compartiments de l’écosystĂšme

    Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006

    Get PDF
    Neoadjuvant (primary systemic) treatment has become a standard option for primary operable disease for patients who are candidates for adjuvant systemic chemotherapy, irrespective of the size of the tumor. Because of new treatments and new understandings of breast cancer, however, recommendations published in 2006 regarding neoadjuvant treatment for operable disease required updating. Therefore, a third international panel of representatives of a number of breast cancer clinical research groups was convened in September 2006 to update these recommendations. As part of this effort, data published to date were critically reviewed and indications for neoadjuvant treatment were newly define
    • 

    corecore