77 research outputs found
Efficient Inversion of Multiple-Scattering Model for Optical Diffraction Tomography
Optical diffraction tomography relies on solving an inverse scattering
problem governed by the wave equation. Classical reconstruction algorithms are
based on linear approximations of the forward model (Born or Rytov), which
limits their applicability to thin samples with low refractive-index contrasts.
More recent works have shown the benefit of adopting nonlinear models. They
account for multiple scattering and reflections, improving the quality of
reconstruction. To reduce the complexity and memory requirements of these
methods, we derive an explicit formula for the Jacobian matrix of the nonlinear
Lippmann-Schwinger model which lends itself to an efficient evaluation of the
gradient of the data- fidelity term. This allows us to deploy efficient methods
to solve the corresponding inverse problem subject to sparsity constraints
Exact continuous relaxations of l0-regularized criteria with non-quadratic data terms
We propose a new class of exact continuous relaxations of l0-regularized
criteria involving non-quadratic data terms such as the Kullback-Leibler
divergence and the logistic regression, possibly combined with an l2
regularization. We first prove the existence of global minimizers for such
problems and characterize their local minimizers.Then, we propose the l0
Bregman Relaxation (B-rex), a continuous approximation of the l0 pseudo-norm
defined in terms of suitable Bregman distances, which leads to an exact
continuous relaxations of the original l0-regularized problem in the sense that
it does not alter its set of global minimizers and reduces the non-convexity by
eliminating certain local minimizers. Both features make the relaxed problem
more amenable to be solved by standard non-convex optimization algorithms. In
this spirit, we consider the proximal gradient algorithm and provide explicit
computation of proximal points for the B-rex penalty in several cases. Finally,
we report a set of numerical results illustrating the geometrical behavior of
the proposed B-rex penalty for different choices of the underlying Bregman
distance, its relation with convex envelopes, as well as its exact relaxation
properties in 1D/2D and higher dimensions
ERRATUM: A Continuous Exact l0 penalty (CEL0) for least squares regularized problem
International audienceLemma 4.4 in [E. Soubies, L. Blanc-Féraud and G. Aubert, SIAM J. Imaging Sci., 8 (2015), pp. 1607-1639] is wrong for local minimizers of the CEL0 functional. The argument used to conclude the proof of this lemma is not sufficient in the case of local minimizers. In this note, we supplya revision of this Lemma where new results are established for local minimizers. Theorem 4.8 in that paper remains unchanged but the proof has to be rewritten according to the new version of the lemma. Finally, some remarks of this paper are also rewritten using the corrected lemma
Optical Diffraction Tomography Meets Fluorescence Localization Microscopy
We show that structural information can be extracted from single molecule
localization microscopy (SMLM) data. More precisely, we reinterpret SMLM data
as the measures of a phaseless optical diffraction tomography system for which
the illumination sources are fluorophores within the sample. Building upon this
model, we propose a joint optimization framework to estimate both the
refractive index map and the position of fluorescent molecules from the sole
SMLM frames.Comment: Presented in ISCS2
The Sliding Frank-Wolfe Algorithm and its Application to Super-Resolution Microscopy
International audienceThis paper showcases the theoretical and numerical performance of the Sliding Frank-Wolfe, which is a novel optimization algorithm to solve the BLASSO sparse spikes super-resolution problem. The BLASSO is a continuous (i.e. off-the-grid or grid-less) counterpart to the well-known 1 sparse regularisation method (also known as LASSO or Basis Pursuit). Our algorithm is a variation on the classical Frank-Wolfe (also known as conditional gradient) which follows a recent trend of interleaving convex optimization updates (corresponding to adding new spikes) with non-convex optimization steps (corresponding to moving the spikes). Our main theoretical result is that this algorithm terminates in a finite number of steps under a mild non-degeneracy hypothesis. We then target applications of this method to several instances of single molecule fluorescence imaging modalities, among which certain approaches rely heavily on the inversion of a Laplace transform. Our second theoretical contribution is the proof of the exact support recovery property of the BLASSO to invert the 1-D Laplace transform in the case of positive spikes. On the numerical side, we conclude this paper with an extensive study of the practical performance of the Sliding Frank-Wolfe on different instantiations of single molecule fluorescence imaging, including convolutive and non-convolutive (Laplace-like) operators. This shows the versatility and superiority of this method with respect to alternative sparse recovery technics
A 3D model with shape prior information for biological structures reconstruction using Multiple-Angle Total Internal Reflection Fluorescence Microscopy
International audienceWe propose a new model for the reconstruction of biological struc- tures using Multiple-Angle Total Internal Reflection Fluorescence Microscopy (MA-TIRFM). This recent microscopy technique allows the visualization of sub-cellular structures around the plasma mem- brane which is of fundamental importance in the comprehension of exchanges mechanisms of the cell. We present a 3D reconstruction method based on a shape prior information on the observed struc- tures and robust to shot noise and background fluorescence. A nov- elty with respect to the state of the art is to propose a method allow- ing the recovery of multiple objects aligned along the axial axis. The optimization problem can be formulated as a minimization problem where both the number of objects in the model and their parame- ters have to be estimated. This difficult combinatorial optimization problem is tackled by using a Marked Point Process approach which allows modelling interactions between the objects in order to regu- larize the inverse problem. Finally, performances of the proposed method are evaluated on synthetic data and real data
Improving 3D MA-TIRF Reconstruction with Deconvolution and Background Estimation
International audienceTotal internal reflection fluorescence microscopy (TIRF) produces 2D images of the fluorescent activity integrated over a very thin layer adjacent to the glass coverslip. By varying the illumination angle (multi-angle TIRF), a stack of 2D images is acquired from which it is possible to estimate the axial position of the observed biological structures. Due to its unique optical sectioning capability, this technique is ideal to observe and study biological processes at the vicinity of the cell membrane. In this paper, we propose an efficient reconstruction algorithm for multi-angle TIRF microscopy which accounts for both the PSF of the acquisition system (diffraction) and the background signal (e.g., autofluorescence). It jointly performs volume reconstruction, deconvolution, and background estimation. This algorithm, based on the simultaneous-direction method of mul-tipliers (SDMM), relies on a suitable splitting of the optimization problem which allows to obtain closed form solutions at each step of the algorithm. Finally, numerical experiments reveal the importance of considering the background signal into the reconstruction process, which reinforces the relevance of the proposed approach
Sur quelques problèmes de reconstruction en imagerie MA-TIRF et en optimisation parcimonieuse par relaxation continue exacte de critères pénalisés en norme-l0
This thesis is devoted to two problems encountered in signal and image processing. The first oneconcerns the 3D reconstruction of biological structures from multi-angle total interval reflectionfluorescence microscopy (MA-TIRF). Within this context, we propose to tackle the inverse problem byusing a variational approach and we analyze the effect of the regularization. A set of simple experimentsis then proposed to both calibrate the system and validate the used model. The proposed method hasbeen shown to be able to reconstruct precisely a phantom sample of known geometry on a 400 nmdepth layer, to co-localize two fluorescent molecules used to mark the same biological structures andalso to observe known biological phenomena, everything with an axial resolution of 20 nm. The secondpart of this thesis considers more precisely the l0 regularization and the minimization of the penalizedleast squares criteria (l2-l0) within the context of exact continuous relaxations of this functional. Firstly,we propose the Continuous Exact l0 (CEL0) penalty leading to a relaxation of the l2-l0 functional whichpreserves its global minimizers and for which from each local minimizer we can define a local minimizerof l2-l0 by a simple thresholding. Moreover, we show that this relaxed functional eliminates some localminimizers of the initial functional. The minimization of this functional with nonsmooth nonconvexalgorithms is then used on various applications showing the interest of minimizing the relaxation incontrast to a direct minimization of the l2-l0 criteria. Finally we propose a unified view of continuouspenalties of the literature within this exact problem reformulation frameworkCette thèse s'intéresse à deux problèmes rencontrés en traitement du signal et des images. Le premierconcerne la reconstruction 3D de structures biologiques à partir d'acquisitions multi-angles enmicroscopie par réflexion totale interne (MA-TIRF). Dans ce contexte, nous proposons de résoudre leproblème inverse avec une approche variationnelle et étudions l'effet de la régularisation. Une batteried'expériences, simples à mettre en oeuvre, sont ensuite proposées pour étalonner le système et valider lemodèle utilisé. La méthode proposée s'est montrée être en mesure de reconstruire avec précision unéchantillon phantom de géométrie connue sur une épaisseur de 400 nm, de co-localiser deux moléculesfluorescentes marquant les mêmes structures biologiques et d'observer des phénomènes biologiquesconnus, le tout avec une résolution axiale de l'ordre de 20 nm. La deuxième partie de cette thèseconsidère plus précisément la régularisation l0 et la minimisation du critère moindres carrés pénalisé (l2-l0) dans le contexte des relaxations continues exactes de cette fonctionnelle. Nous proposons dans unpremier temps la pénalité CEL0 (Continuous Exact l0) résultant en une relaxation de la fonctionnelle l2-l0 préservant ses minimiseurs globaux et pour laquelle de tout minimiseur local on peut définir unminimiseur local de l2-l0 par un simple seuillage. Par ailleurs, nous montrons que cette relaxation éliminedes minimiseurs locaux de la fonctionnelle initiale. La minimisation de cette fonctionnelle avec desalgorithmes d'optimisation non-convexe est ensuite utilisée pour différentes applications montrantl'intérêt de la minimisation de la relaxation par rapport à une minimisation directe du critère l2-l0. Enfin,une vue unifiée des pénalités continues de la littérature est proposée dans ce contexte de reformulationexacte du problèm
On some reconstruction problems in MA-TIRF imaging and in sparse optimization using continuous exact relaxation of l0-penalized criteria
Cette thèse s'intéresse à deux problèmes rencontrés en traitement du signal et des images. Le premierconcerne la reconstruction 3D de structures biologiques à partir d'acquisitions multi-angles enmicroscopie par réflexion totale interne (MA-TIRF). Dans ce contexte, nous proposons de résoudre leproblème inverse avec une approche variationnelle et étudions l'effet de la régularisation. Une batteried'expériences, simples à mettre en oeuvre, sont ensuite proposées pour étalonner le système et valider lemodèle utilisé. La méthode proposée s'est montrée être en mesure de reconstruire avec précision unéchantillon phantom de géométrie connue sur une épaisseur de 400 nm, de co-localiser deux moléculesfluorescentes marquant les mêmes structures biologiques et d'observer des phénomènes biologiquesconnus, le tout avec une résolution axiale de l'ordre de 20 nm. La deuxième partie de cette thèseconsidère plus précisément la régularisation l0 et la minimisation du critère moindres carrés pénalisé (l2-l0) dans le contexte des relaxations continues exactes de cette fonctionnelle. Nous proposons dans unpremier temps la pénalité CEL0 (Continuous Exact l0) résultant en une relaxation de la fonctionnelle l2-l0 préservant ses minimiseurs globaux et pour laquelle de tout minimiseur local on peut définir unminimiseur local de l2-l0 par un simple seuillage. Par ailleurs, nous montrons que cette relaxation éliminedes minimiseurs locaux de la fonctionnelle initiale. La minimisation de cette fonctionnelle avec desalgorithmes d'optimisation non-convexe est ensuite utilisée pour différentes applications montrantl'intérêt de la minimisation de la relaxation par rapport à une minimisation directe du critère l2-l0. Enfin,une vue unifiée des pénalités continues de la littérature est proposée dans ce contexte de reformulationexacte du problèmeThis thesis is devoted to two problems encountered in signal and image processing. The first oneconcerns the 3D reconstruction of biological structures from multi-angle total interval reflectionfluorescence microscopy (MA-TIRF). Within this context, we propose to tackle the inverse problem byusing a variational approach and we analyze the effect of the regularization. A set of simple experimentsis then proposed to both calibrate the system and validate the used model. The proposed method hasbeen shown to be able to reconstruct precisely a phantom sample of known geometry on a 400 nmdepth layer, to co-localize two fluorescent molecules used to mark the same biological structures andalso to observe known biological phenomena, everything with an axial resolution of 20 nm. The secondpart of this thesis considers more precisely the l0 regularization and the minimization of the penalizedleast squares criteria (l2-l0) within the context of exact continuous relaxations of this functional. Firstly,we propose the Continuous Exact l0 (CEL0) penalty leading to a relaxation of the l2-l0 functional whichpreserves its global minimizers and for which from each local minimizer we can define a local minimizerof l2-l0 by a simple thresholding. Moreover, we show that this relaxed functional eliminates some localminimizers of the initial functional. The minimization of this functional with nonsmooth nonconvexalgorithms is then used on various applications showing the interest of minimizing the relaxation incontrast to a direct minimization of the l2-l0 criteria. Finally we propose a unified view of continuouspenalties of the literature within this exact problem reformulation framewor
- …