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ABSTRACT

We propose a new model for the reconstruction of biological struc-
tures using Multiple-Angle Total Internal Reflection Fluorescence
Microscopy (MA-TIRFM). This recent microscopy technique allows
the visualization of sub-cellular structures around the plasma mem-
brane which is of fundamental importance in the comprehension of
exchanges mechanisms of the cell. We present a 3D reconstruction
method based on a shape prior information on the observed struc-
tures and robust to shot noise and background fluorescence. A nov-
elty with respect to the state of the art is to propose a method allow-
ing the recovery of multiple objects aligned along the axial axis. The
optimization problem can be formulated as a minimization problem
where both the number of objects in the model and their parame-
ters have to be estimated. This difficult combinatorial optimization
problem is tackled by using a Marked Point Process approach which
allows modelling interactions between the objects in order to regu-
larize the inverse problem. Finally, performances of the proposed
method are evaluated on synthetic data and real data.

Index Terms— 3D reconstruction, Total Internal Reflection
Fluorescence Microscopy, Vesicles reconstruction, Evanescent wave
microscopy

1. INTRODUCTION

Current researches in biology require the visualisation of finer and
finer structures in order to understand tumor organisation and de-
velopment. Such three-dimensional structures can be observed by
fluorescence microscopy techniques; however, the axial resolution
of these instruments, because of the limitations of conventional op-
tics, is restricted to a few hundred of nanometers (e.g. ∼ 500 nm
for confocal microscope).

Total Internal Reflection Fluorescence Microscopy gives access
to a single layer of ∼ 100 nm behind the glass coverslip (5× better,
in terms of axial resolution, than confocal) and provides low back-
ground fluorescence and hight signal-to-noise ratio images. While
single TIRFM acquisition is a unique projection of the observed
volume and can not provide 3D information, developing algorithms
dedicated to Multiple-Angle TIRFM (MA-TIRFM) allows to re-
construct 3D structures and overcome the axial resolution of single
TIRFM by taking TIRFM acquisitions at different incident angles.

Our aim in this work is to propose a 3D reconstruction model
with shape prior information which is robust to image degradations
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(i.e. shot noise and background fluorescence). Some previous works
on the estimation of axial positions from MA-TIRFM have been
developed. Truskey et al. [1] and Ölveczky et al. [2] were interested
in estimating cell/substratum separation distance. Axial position of
the membrane is estimated for each pixel using a one-dimensional
geometry but ignoring membrane continuity information. Both pro-
posed methods does not consider shot noise and background fluores-
cence. Position and diameter of secretory granules have been studied
by Rohrbach [3] and Loerke et al. [4]. They deal with isolated gran-
ules and model them by spherical (Rohrbach) and cubic (Loerke)
volumes. The proposed models ignore the Poisson noise (i.e shot
noise) due to the photon collection process. More recently, Yang et
al. [5] proposed a 3D reconstruction method of microtubules based
on a statistical framework. Axial positions along the segmented
curvilinear structures are computed using a Maximum A Posteriori
estimator taking into account the Poisson noise. A MAP-Bayesian
method is also used by Liang et al. [6] for 3D particle estimation.
All of these methods make the strong assumption that at a given
position (x, y) there is only one object along the axial axis. This is
a simplifying assumption. In this study, we propose a new model
that does not require this assumption. The difficulty of recovering
multiple objects for a given radial position (x,y) is tackled by us-
ing object modelling in the Marked Point Process (MPP) framework.

The paper is organized as follows. In section 2 we formalize the
reconstruction problem. Section 3 describes the proposed model and
the Marked Point Process framework used to estimate object param-
eters. Finally, some numerical results are presented in section 4.

2. PROBLEM STATEMENT

Total internal reflection of a light beam, at the interface between
two mediums of refractive indices ni (incident) and nt (transmitted),
occurs when the incident angleα become greater than a critical angle
αc defined by sin(αc) = nt/ni. This phenomenon produces an
evanescent wave capable of exciting fluorophores that are near the
dielectric surface. Theoretically, the axial profile of the evanescent
wave decreases according to the law [7]:

I(z, α) = I0(α) exp

„
− z

d(α, λ)

«
(1)

where I0(α) is the intensity at the interface (i.e z = 0), d(α, λ) =

λ/(4πni)(sin
2(α) − sin2(αc))

−1/2 is the penetration depth and λ
is the incident light wavelength. Excited fluorophores emit photons
that are then collected by a CCD camera.



Let R(x, y, z) denote the 3D unknown fluorophore density and
I2 ⊂ R2 the (continuous) 2D observed image space. TIRF image
formation is formulated as follows [7]:

∀(x, y) ∈ I2, αcrit < α < αmax,

S(x, y, α) =

Z ∞
0

R(x, y, z) exp

„
− z

d(α, λ)

«
dz

(2)

where S(x, y, α) is the recorded image for the incident angle α. The
intensity I0 (in equation (1)) is known theoretically from Fresnel
formulas [7], so the observed data S can be normalized by I0 and
we can omit this term in model (2). Note that because of the thinness
of the evanescent wave penetration depth, the point spread function
(PSF) along the axial direction can be set to 1 that is why it does not
appears in (2).

Figure 1 contains an example of MA-TIRFM from a sample of
cortactin. It is readily seen from these images that when the pen-
etration depth decreases (from left to right), some fluorophores are
not excited anymore. These structures are the deeper ones and so we
can get 3D information from this set of images. The problem is then
to determine R in (2) from acquisitions Sα with different incident
angles.

Fig. 1. Multiple-angle TIRFM (MA-TIRFM) acquisitions from a
cortactin sample (protein involved in cell adhesion). Left : deeper
penetration depth. Right : thinner penetration depth.

3. 3D RECONSTRUCTION METHOD

3.1. Introduction and Notations

Since problem (2) is an ill-posed inverse problem, direct inversion
is not possible and a regularization is essential. The 3D unknown
fluorophore density can be seen as a collection of parametrized ob-
jects and this prior information is introduced in the solution. The
problem is then to determine R as a configuration of parametrized
objects which satisfies equation (2).

Object modelling: Let O(ρ, ω) ⊂ R3 denotes an object defined
on a state space X = P ×M by its location ρ ∈ P and its marks
(i.e geometric attributes ω ∈ M )1. Since the number of objects is
unknown, we aim both at finding this number denoted NO ∈ N and
the best sets of parameters {ρj , ωj} ∈ X , j ∈ {1, · · · , NO} with
respect to the observed data Sαl , l ∈ {1, · · · , L} where L is the
number of incident angles used. In the following, we denote by x a
configuration containing NO objects.

1See section 4 for an example where P and M are defined for spheres.

Fluorophore density: Given a configuration of objects x, the un-
known fluorophore density can be defined as follows:

Rx(x, y, z) =

NOX
j=1

kj1O(ρj ,ωj)(x, y, z) (3)

where kj ∈ K = [kmin, kmax] j ∈ {1, · · · , NO} are the objects
intensities which have also to be estimated2.

3.2. Optimisation Algorithm

The Marked Point Process approach [8, 9] allows to estimate a
configuration of objects whose number, location and shape are un-
known. The principle consists in the simulation of a Gibbs process
defined by the density (against the Poisson process measure):

f(x) =
1

Z
exp[−U(x)] (4)

where Z is a normalisation factor which can not be computed and
U the energy to minimize. In order to simulate this law, a Markov
chain which has the stationary distribution f (equation 4) is con-
structed. The Reversible Jump MCMC embedded in a simulated
annealing framework allows to construct a such Markov Chain by
using stochastic dynamics. More details on this approach are given
in [10]. The energy U is written as the sum of a data term Ud and a
prior term Up which are presented in the latter.

Data term Ud: We denote by bg a constant that models the back-
ground fluorescence produced by parasites light sources in the
medium (e.g. autofluorescence, light reflection, fluorescence diffu-
sion in the sample). We can easily estimate bg from an image region
without objects and so, in the following, bg is supposed to be known.
Shot noise have also to be considered in the model. It is inherent to
the photon collection process and follows a Poisson distribution.

Let Id2 ∈ N be the (discrete) image space (i.e. card(Id2 ) =
number of pixels in the data images). For all i ∈ Id2 and for all
l ∈ {1, · · · , L}, we model the noisy observed discrete signal Sil =
S(i, αl) as follows:

Sil = P(βil) (5)

where P is the Poisson distribution and βil is defined by:

βil =

Z
Ai

Z ∞
0

(Rx(x, y, z) + bg) e

“
−z

d(αl,λ)

”
dxdydz (6)

Here, Ai ⊂ I2 is the region of I2 that corresponds to the pixel
i ∈ Id2 and Rx is defined by (3).

From (5) we get, ∀i ∈ Id2 and ∀l ∈ {1, · · · , L}, the conditional
probability:

P (Sil|x) = β
Sil
il

e−βil

Sil!
(7)

Assuming that observations Sil given the configuration x are
pairwise independent ∀i ∈ Id2 , ∀l ∈ {1, · · · , L}, the joint density
function (i.e. the likelihood function of the observations S given a
configuration x) can be written as:

P (S|x) =
Y
i∈Id2

LY
l=1

P (Sil|x) (8)

2kmin and kmax are user defined bounds on the objects intensities.



where S ∈ RnL (n = card(Id2 )). This assumption can be jus-
tified by the fact that for a given configuration x, the data depend
only to the noise, which is pairwise independent ∀i ∈ Id2 , ∀l ∈
{1, · · · , L}.

Finally, the data term is defined from the likelihood function (8)
by:

Ud(x) = − log (P (S|x))

=
X
i∈Id2

LX
l=1

Sil log

„
1

βil

«
+ βil

(9)

Prior term Up: This term is essential in order to regularize the
inverse problem (2). It takes into account some prior information
on the solution such as interactions between geometric objects. In
this study we focused on vesicle features estimation. Since vesicle
should not overlap, we define the following term:

U1
p (x) =

X
u∈x

X
v∈x

Θ(u, v) (10)

where Θ(u, v) is equal to 1 if the objects u and v overlap and 0
otherwise.

We add a second term U2
p (x) = card(x) which penalizes the

number of objects in x. Finally the prior term is given by:

Up(x) = γ1U
1
p (x) + γ2U

2
p (x) (11)

where γ1 and γ2 are the weight assigned to each term.
Finally, we have the global energy U = Ud + Up which is min-

imized using the MPP approach briefly presented in section 3.2.

4. EXPERIMENTAL RESULTS

In this section, we present some practical results on synthetic data
and real data. Here, we are interested in estimating vesicle features,
which are modelled by spherical volumes, ∀j ∈ {1, · · · , NO}:

O(ωj) = Bj =
˘

(x, y, z) ∈ R3 s.t. (13)
¯

(12)

(x− cx)2 + (y − cy)2 + (z − cz)2 ≤ r2 (13)

where (cx, cy, cz) denotes the center coordinates of the ball B and r
the radius. These parameters belong to the state space X = P ×M
defined by:

P = I2 × [0, zmax] M = [rmin, rmax] (14)

Here, zmax is a boundary of cz characterized by the deeper pene-
tration depth of MA-TIRFM and, rmin and rmax are user defined
bounds on the radius. A third prior term U3

p is defined to penalize
objects with cz < r. Note that the method proposed in section 3
can deal with more complex structures than spheres. Indeed, the re-
quirements of the method with respect to the objects’ shape are to be
able to compute the data term (i.e compute βil (6)) and to determine
whether two objects intersect. These requirements can be performed
with various shapes even if it means discretizing the βil integral and
using a naive method to compute the overlapping (i.e pixel by pixel).

4.1. Using Synthetic Data

The proposed method is evaluated on synthetic noisy data. In order
to quantify the robustness of the method with respect to noise, tests
under different noise levels have been done. Two different ways are
used for varying the noise level in the acquisition simulation. The
first one consists in modifying the background fluorescence level (by

varying the bg constant). In the following, simulated bg will be given
as a percentage of the maximum intensity of the simulated sample.
Another way to modify the noise level can be performed by adding
a parameter δ as follows:

Sil =
1

δ
P(δβil) (15)

in order to change the variance of the Poisson distribution, which
mimics the photon collection process.

Root mean square errors (RMSE) have been computed for each
parameters:

RMSEY =

vuut 1

NO

NOX
i=1

(Ŷi − Yi)2 (16)

where Ŷ is the estimated parameter and Y the exact value of this
parameter.

Figure 2 shows the RMSE for different background fluorescence
levels (i.e. different values of bg). We obtain a hight accuracy recon-
struction with an RMSE less than 10 nm for parameters cx, cy and
r. A larger RMSE (between 80 and 125 nm, depending on the noise
level) is found on the axial position vesicles estimation.

Fig. 2. RMSE with different background fluorescence levels and
δ = 0.1. Left : RMSE of objects intensities. Right : RMSE of
objects positions and radius.

As we can see on figure 3, the error on the axial position estima-
tion is due to the deepest objects (> 300 nm), objects close to the
glass interface are well estimated. Same remarks can be make when
we change the Poisson noise (with different values of δ) but due to
page limit, results are not presented here.

4.2. Using real Data

The method have also been tested on real data. In order to be able to
quantify the quality of the reconstruction, we used a sample of beads
of known diameters (170 nm). These beads have been fluorescently
labelled and placed at the interface with the glass coverslip in an oil
which has the same refractive index as water. The microscope has
been developed based on a Nikon Ti-E with 100x/1.49O objective
(Nikon). We used an Ixon897 (Andor) for detection and galvanome-
ters mirror (Cambridge Technology) for the control of the illumina-
tion angle. The entire system is driven with Labview (National In-
struments). Six different incident angles have been used from 63.33◦

to 79.23◦. Figure 4 shows the acquired images for incident angles
63.33◦ and 79.23◦.

Estimated parameters are presented in table 1. Maximal error on
the radius is found on the bead 2 with an error of 30 nm (the exact



Fig. 3. Reconstructions with different background fluorescence lev-
els and δ = 0.1 (colors represent z positions of objects). From left
to right : simulated sample, reconstruction for bg = 1%, reconstruc-
tion for bg = 10%, reconstruction for bg = 20%. Data images’ size
: 50×50. Reconstructed image size : 50×50×50. CPU time' 20
min on a hp Z800 PC with an IntelTM processor (Xeon, 2.40GHz)
and a Linux OS. The algorithm is implemented in Matlab.

Fig. 4. Real image of beads. Left : α = 63.33◦. Right : α =
79.23◦. Data images’ size : 60× 83.

radius of the beads is 85 nm). Note that during beads placement
at the interface with the glass coverslip, it is not possible to ensure
that only one bead is present, there may be a cluster of beads which
could explain the estimated radius. Moreover, we can see that found
parameters satisfies the property cz ' r meaning that beads are in
contact with the glass interface. Although we have not yet studied
all microscope uncertainties, which make the reconstruction prob-
lem a hard task on real data, these results are promising for feature
estimation of predefined shape structures.

Table 1. Estimated parameters. Reconstructed image size : 60 ×
83× 50. CPU time ' 15 min on the same computer as described in
the legend of the figure 3 .

Bead k cx (nm) cy (nm) cz (nm) r (nm)

1 0.4 1297.8 1493.1 101.4 101.3
2 0.2 3601.4 4802.3 114.1 114
3 0.3 4118.2 7129.5 91.9 91.6

5. CONCLUSIONS AND FUTURE WORK

We proposed a new model for the reconstruction of three-dimensional
structures from a set of 2D images produced by TIRF microscopy.
This model takes into account shot noise, background fluorescence
and allows multiple objects to be aligned along the axial axis. A
Marked Point Process approach is used to estimate objects’ pa-
rameters with respect to data images. Then we show the robustness
of the model with respect to shot noise and background fluorescence.

Future work will focus on microscope calibration in order to im-
prove the reconstruction accuracy on real data. Theoretically, the
axial profile of the evanescent wave decreases according to an expo-
nential law (equation (1)). However, it is not the case in practice and
experimental calibration of this profile has to be done [5, 11]. We
will also investigate the possibility of this model to deal with more
complex structures than spheres and the method will be tested in col-
laboration with biologists for the observation of vesicle involved in
cell adhesion mechanism.
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