6 research outputs found

    Relativistic Ionization of Hydrogen Atoms by Positron Impact

    No full text
    Relativistic triple differential cross-sections (TDCS) for ionization of hydrogen atoms by positron impact have been calculated in the symmetric coplanar geometry. We have used Dirac wave functions to describe free electron’s and positron’s sates. The relativistic formalism is examined by taking the non relativistic limit. Present results are compared with those for the corresponding electron-impact case. In the first Born approximation, we found that the TDCS for positron impact ionization exceeds that for electron impact for all energies in accordance with the result obtained by several other theories

    Assessment of the relative impacts of climate changes and anthropogenic forcing on Ouergha watershed hydrology (North-East of Morocco)

    No full text
    Understanding the spatiotemporal distribution of past and future climate change impact is essential for effective water resource management. This study aims to reveal the impact of temperature and precipitation change on hydrological streamflow of Ouergha watershed and on the inflow regime of Al Wahda dam. Initially, historical climate trend was assessed using Mann Kendall tests and Sen’s slope. Then, regional Climate Models (Cordex-Africa) were used to project future precipitation and temperature data under two emission scenarios (RCP4.5 as realistic and RCP8.5 as pessimistic). After correcting the biases in climatic variables using three different methods, the calibrated and validated SWAT model was forced to project the hydrological simulations under both scenarios. The study shows a clear decreasing in precipitation and augmentation in annual mean temperature over the past decades. In addition, projected climate variables expected severe change in future precipitation (decreasing) and mean temperature (Increasing). The impact of this climatic alteration is expected to extremely affect rivers discharge and reservoir inflows in both magnitude and timing

    Assessment of soil erosion using two spatial approaches: RUSLE and SWAT Model

    No full text
    In this paper, we attempted to review the erosion in the Ouergha watershed by applying two spatial approaches. The Ouergha watershed has an area of around 7300 kmÂČ representing approximately 18.2% of the Sebou basin of which it is the main tributary. In order to develop the erosion map using the SWAT model, it was important to prepare a large spatial database describing basin proprieties, furthermore, the daily hydro-climatic data. This model integrates MUSLE equation for the estimation of specific degradation. In addition, the estimation of erosion through SWAT was consolidated by constructing an erosion mapping through RUSLE method. This method was applied following an approach based on the use of remote sensing data and GIS tools to produce the major factors involved in the erosive process and their integration into RUSLE. The results obtained, in cartographic form, make it possible to target areas that require priority action for a larger-scale analysis, with a view to finding appropriate solutions to fight against erosion and protect the natural environment. Soil degradation in the Ouergha watershed is around 27 ton/ha/year (SWAT_MUSLE) and 25 ton/ha/year (RUSLE). Average sediment yield was estimated for Al Wahda dam of 10.4 Million tons

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    No full text
    International audienceSignificance There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    No full text
    International audienceSignificance There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population
    corecore