199 research outputs found

    Carbon-coated titania nanostructured particles: Continuous, one-step flame-synthesis

    Get PDF
    Concurrent synthesis of titania-carbon nanoparticles (up to 52 wt.% in C) was studied in a diffusion flame aerosol reactor by combustion of titanium tetraisopropoxide and acetylene. These graphitically layered carbon-coated titania particles were characterized by high-resolution transmission electron microscopy (HRTEM), with elemental mapping of C and Ti, x-ray diffraction (XRD), and nitrogen adsorption [Brunauer-Emmett-Teller (BET)]. The specific surface area of the powder was controlled by the acetylene flow rate from 29 to 62 m2/g as the rutile content decreased from 68 to 17 wt.%. Light blue titania suboxides formed at low acetylene flow rates. The average XRD crystal size of TiO2 decreased steadily with increasing carbon content of the composite powders, while the average BET primary particle size calculated from nitrogen adsorption decreased first and then approached a constant value. The latter is attributed to the formation of individual carbon particles next to carbon-coated titania particles as observed by HRTEM and electron spectroscopic imagin

    Synthesis of bimodally porous titania powders by hydrolysis of titanium tetraisopropoxide

    Get PDF
    Bimodally porous titania powders with controlled phase composition and porosity were made by hydrolysis of titanium tetraisopropoxide (TTIP) and calcination. The extent of calcination was followed by thermogravimetric differential thermal analysis and Fourier transform infrared spectroscopy. The specific surface area (SSA) of the powders ranged from 10 to 500 m2/g as determined by nitrogen adsorption. The SSA increased by decreasing either the water concentration during hydrolysis or the calcination temperature. The pore size distribution was bimodal with fine intraparticle pore diameters at 1-6 nm and larger interparticle pore diameters at 30-120 nm as determined by nitrogen adsorption isotherms. The particle phase composition as determined by x-ray diffraction ranged from amorphous to crystalline anatase and rutile largely proportional to the calcination temperature and to a lesser extent on the initial H2O/TTIP molar rati

    Agglomerate-free BaTiO3 particles by salt-assisted spray pyrolysis

    Get PDF
    Optimum conditions for the synthesis of nonagglomerated BaTiO3 particles by salt-assisted spray pyrolysis (SASP) were investigated. The effect of particle residence time in the reactor and salt concentration on the crystallinity and surface morphology of BaTiO3 was examined by x-ray diffraction and scanning electron microscopy. Mixtures of a metal chloride or nitrate salt, dissolved in aqueous precursor solutions, were sprayed by an ultrasonic atomizer into a five-zone hot-wall reactor. By increasing the salt concentration or the particle residence time in the hot zone, the primary particle size was increased, and its surface texture was improved compared to BaTiO3 particles prepared by conventional spray pyrolysis. The SASP-prepared BaTiO3 crystal was transformed from cubic to tetragonal by simply increasing the salt concentration at constant temperature and residence time. Further thermal treatments such as calcination or annealing are not necessary to obtain nonagglomerated tetragonal BaTiO3 (200-500 nm) particles with a narrow size distribution. Increasing the carrier gas flow rate and decreasing the residence time in the hot zone resulted in cubic BaTiO3 particles about 20 nm in diamete

    Size-selected agglomerates of SnOâ‚‚ nanoparticles as gas sensors

    No full text
    The effect of nanoparticle structure on gas sensing performance is investigated. Size-selected nanostructured SnO₂ agglomerate particles for gas sensors were made by scalable flame spray pyrolysis. These particles were polydisperse (up to 12μm in diameter) and consisted of primary particles of 10nm in grain and crystal size as measured by transmission electron microscopy, x-ray diffraction, and Berner low pressure impactor (BLPI). The effect of agglomerate size on thermal stability and sensing of ethanol vapor (4–100ppm) and CO (4–50ppm) was investigated by selecting nearly monodisperse fractions of these agglomerates by the BLPI. Sensor layers made with these size-fractionated agglomerates exhibited higher thermal stability and dramatically enhanced sensitivity for both analytes than layers made with polydisperse agglomerates. This is attributed to their aggregate (or hard agglomerate) structure exhibiting small sinter necks between their constituent primary particles of tin dioxide that had also a narrow size distribution as expected for particles generated in flames. Upon further sintering of these optimally sized, nanostructured agglomerates, grain and neck growth degraded their superior sensitivity, supporting the proposed mechanism of their enhanced sensitivity: optimal primary particle necking.Financial support was provided by ETH Zurich FEL-04 08-3, Finnish Academy, Tekes The Finnish National Technology Agency, and Nanoprim

    Independent Control of Metal Cluster and Ceramic Particle Characteristics During One-step Synthesis of Pt/TiO2

    Get PDF
    Rapid quenching during flame spray synthesis of Pt/TiO2 (0-10 wt% Pt) is demonstrated as a versatile method for independent control of support (TiO2) and noble metal (Pt) cluster characteristics. Titania grain size, morphology, crystal phase structure, and crystal size were analyzed by nitrogen adsorption, electron microscopy and x-ray diffraction, respectively, while Pt-dispersion and size were determined by CO-pulse chemisorption. The influence of quench cooling on the flame temperature was analyzed by Fourier transform infrared spectroscopy. Increasing the quench flow rate reduced the Pt diameter asymptotically. Optimal quenching with respect to maximum Pt-dispersion (∼60%) resulted in average Pt diameters of 1.7 to 2.3 nm for Pt-contents of 1-10 wt%, respectivel

    Handheld Device for Selective Benzene Sensing over Toluene and Xylene

    Full text link
    More than 1 million workers are exposed routinely to carcinogenic benzene, contained in various consumer products (e.g., gasoline, rubbers, and dyes) and released from combustion of organics (e.g., tobacco). Despite strict limits (e.g., 50 parts per billion (ppb) in the European Union), routine monitoring of benzene is rarely done since low-cost sensors lack accuracy. This work presents a compact, battery-driven device that detects benzene in gas mixtures with unprecedented selectivity (>200) over inorganics, ketones, aldehydes, alcohols, and even challenging toluene and xylene. This can be attributed to strong Lewis acid sites on a packed bed of catalytic WO3 nanoparticles that prescreen a chemoresistive Pd/SnO2 sensor. That way, benzene is detected down to 13 ppb with superior robustness to relative humidity (RH, 10–80%), fulfilling the strictest legal limits. As proof of concept, benzene is quantified in indoor air in good agreement (R2 ≥ 0.94) with mass spectrometry. This device is readily applicable for personal exposure assessment and can assist the implementation of low-emission zones for sustainable environments

    Multimineral nutritional supplements in a nano-CaO matrix

    Get PDF
    The fast dissolution of certain calcium-containing compounds makes them attractive carriers for trace minerals in nutritional applications, e.g., iron and zinc to alleviate mineral deficiencies in affected people. Here, CaO-based nanostructured mixed oxides containing nutritionally relevant amounts of Fe, Zn, Cu, and Mn were produced by one-step flame spray pyrolysis. The compounds were characterized by nitrogen adsorption, x-ray diffraction, (scanning) transmission electron microscopy, and thermogravimetric analysis. Dissolution in dilute acid (i.d.a.) was measured as an indicator of their in vivo bioavailability. High contents of calcium resulted in matrix encapsulation of iron and zinc preventing formation of poorly soluble oxides. For 3.6 ≤ Ca:Fe ≤ 10.8, Ca2Fe2O5 coexisted with CaO. For Ca/Zn compounds, no mixed oxides were obtained, indicating that the Ca/Zn composition can be tuned without affecting their solubility i.d.a. Aging under ambient conditions up to 225 days transformed CaO to CaCO3 without affecting iron solubility i.d.a. Furthermore, Cu and Mn could be readily incorporated in the nanostructured CaO matrix. All such compounds dissolved rapidly and completely i.d.a., suggesting good in vivo bioavailabilit
    • …
    corecore