248 research outputs found

    EFFECT OF MIPOMERSEN ON LIPOPROTEIN(A) IN PATIENTS WITH HYPERCHOLESTEROLEMIA ACROSS FOUR PHASE III STUDIES

    Get PDF

    Imaging of Oxidation-Specific Epitopes in Atherosclerosis and Macrophage-Rich Vulnerable Plaques

    Get PDF
    Oxidative stress, and in particular oxidation of lipoproteins, is a hallmark of atherosclerosis. Upon entry of lipoproteins into the vessel wall, a cascade of pro-atherogenic pathways is initiated whereby the reaction of reactive oxygen species with substrates amenable to oxidation, such as polyunsaturated fatty acids, generates a variety of oxidation-specific epitopes on lipoproteins, proteins in the vessel wall, and apoptotic macrophages. Several of these oxidation-specific epitopes have been well characterized and specific murine and fully human antibodies have been generated in our laboratory to detect them in the vessel wall. We have developed radionuclide, gadolinium and iron oxide based MRI techniques to noninvasively image oxidation-specific epitopes in atherosclerotic lesions. These approaches quantitate plaque burden and also allow detection of atherosclerosis regression and plaque stabilization. In particular, gadolinium micelles or lipid-coated ultrasmall superparamagnetic iron oxide particles containing oxidation-specific antibodies accumulate within macrophages in the artery wall, suggesting they may image the most unstable plaques. Translation of these approaches to humans may allow a sensitive technique to image and monitor high-risk atherosclerotic lesions and may guide optimal therapeutic interventions

    Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages.

    Get PDF
    Activation of liver X receptors (LXRs) with synthetic agonists promotes reverse cholesterol transport and protects against atherosclerosis in mouse models. Most synthetic LXR agonists also cause marked hypertriglyceridemia by inducing the expression of sterol regulatory element-binding protein (SREBP)1c and downstream genes that drive fatty acid biosynthesis. Recent studies demonstrated that desmosterol, an intermediate in the cholesterol biosynthetic pathway that suppresses SREBP processing by binding to SCAP, also binds and activates LXRs and is the most abundant LXR ligand in macrophage foam cells. Here we explore the potential of increasing endogenous desmosterol production or mimicking its activity as a means of inducing LXR activity while simultaneously suppressing SREBP1c-induced hypertriglyceridemia. Unexpectedly, while desmosterol strongly activated LXR target genes and suppressed SREBP pathways in mouse and human macrophages, it had almost no activity in mouse or human hepatocytes in vitro. We further demonstrate that sterol-based selective modulators of LXRs have biochemical and transcriptional properties predicted of desmosterol mimetics and selectively regulate LXR function in macrophages in vitro and in vivo. These studies thereby reveal cell-specific discrimination of endogenous and synthetic regulators of LXRs and SREBPs, providing a molecular basis for dissociation of LXR functions in macrophages from those in the liver that lead to hypertriglyceridemia

    Lipoprotein(a) and incident type-2 diabetes: results from the prospective Bruneck study and a meta-analysis of published literature.

    Get PDF
    AIMS: We aimed to (1) assess the association between lipoprotein(a) [Lp(a)] concentration and incident type-2 diabetes in the Bruneck study, a prospective population-based study, and (2) combine findings with evidence from published studies in a literature-based meta-analysis. METHODS: We used Cox proportional hazards models to calculate hazard ratios (HR) for incident type-2 diabetes over 20 years of follow-up in 815 participants of the Bruneck study according to their long-term average Lp(a) concentration. For the meta-analysis, we searched Medline, Embase and Web of Science for relevant prospective cohort studies published up to October 2016. RESULTS: In the Bruneck study, there was a 12% higher risk of type-2 diabetes for a one standard deviation lower concentration of log Lp(a) (HR = 1.12 [95% CI 0.95-1.32]; P = 0.171), after adjustment for age, sex, alcohol consumption, body mass index, smoking status, socioeconomic status, physical activity, systolic blood pressure, HDL cholesterol, log high-sensitivity C-reactive protein and waist-hip ratio. In a meta-analysis involving four prospective cohorts with a total of 74,575 participants and 4514 incident events, the risk of type-2 diabetes was higher in the lowest two quintiles of Lp(a) concentrations (weighted mean Lp(a) = 3.3 and 7.0 mg/dL, respectively) compared to the highest quintile (62.9 mg/dL), with the highest risk of type-2 diabetes seen in quintile 1 (HR = 1.28 [1.14-1.43]; P < 0.001). CONCLUSIONS: The current available evidence from prospective studies suggests that there is an inverse association between Lp(a) concentration and risk of type-2 diabetes, with a higher risk of type-2 diabetes at low Lp(a) concentrations (approximately <7 mg/dL)

    Spontaneous recanalization of a completely occluded saphenous vein graft two months following acute myocardial infarction with persistent one year patency

    Get PDF
    Acute myocardial infarction resulting from saphenous vein graft occlusion occurs not infrequently in patients who have undergone coronary artery bypass graft surgery. In this case report, we present a novel case of spontaneous recanalization of a thrombotic graft occlusion in a patient who presented with a subacute myocardial infarction. The patient was treated medically with aspirin as the only anti-platelet agent. Interestingly, he presented 2 months later with new onset angina. Coronary angiography demonstrated complete resolution of thrombus but a severe focal stenosis in the distal anastomoses. Following drug eluting stent placement, a favorable clinical course has ensued and patency confirmed on follow up angiography at 1 year

    Atherogenic Lipoprotein(a) Increases Vascular Glycolysis, Thereby Facilitating Inflammation and Leukocyte Extravasation

    Get PDF
    Rationale: Patients with elevated levels of lipoprotein(a) [Lp(a)] are hallmarked by increased metabolic activity in the arterial wall on positron emission tomography/computed tomography, indicative of a proinflammatory state. Objective: We hypothesized that Lp(a) induces endothelial cell inflammation by rewiring endothelial metabolism. Methods and Results: We evaluated the impact of Lp(a) on the endothelium and describe that Lp(a), through its oxidized phospholipid content, activates arterial endothelial cells, facilitating increased transendothelial migration of monocytes. Transcriptome analysis of Lp(a)-stimulated human arterial endothelial cells revealed upregulation of inflammatory pathways comprising monocyte adhesion and migration, coinciding with increased 6-phophofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)-3-mediated glycolysis. ICAM (intercellular adhesion molecule)-1 and PFKFB3 were also found to be upregulated in carotid plaques of patients with elevated levels of Lp(a). Inhibition of PFKFB3 abolished the inflammatory signature with concomitant attenuation of transendothelial migration. Conclusions: Collectively, our findings show that Lp(a) activates the endothelium by enhancing PFKFB3-mediated glycolysis, leading to a proadhesive state, which can be reversed by inhibition of glycolysis. These findings pave the way for therapeutic agents targeting metabolism aimed at reducing inflammation in patients with cardiovascular disease
    • 

    corecore