56 research outputs found

    A review of key environmental and energy performance indicators for the case of Renewable Energy Systems when integrated with storage solutions.

    Get PDF
    During the last years a variety of numerical tools and algorithms have been developed aiming at quantifying and measuring the environmental impact of multiple types of energy systems, as those based on Renewable Energy Sources. Plenty of studies have proposed the use of a Life Cycle Assessment methodology, to determine the environmental impact of renewable installations when coupled with storage solutions, based on a pre-selected repository of Key Performance Indicators. The main scope of this paper is to propose a limited number of best fitting, and at the same time easily adaptable to various configurations, list of KPIs for the case of renewable energy systems. This is done by capitalizing on the environmental and energy performance KPIs tracked in the open literature (e.g. “Global Warming Potential”, “Energy Payback Time”, “Battery Total Degradation”, “Energy Stored on Invested”, “Cumulative Energy Demand”) and/or other proposing new simple, scalable and adaptable ones, (e.g. “Embodied Energy for Infrastructure of Materials and for the building system”, “Life Cycle CO2 Emissions”, “Reduction of the Direct CO2 emissions”, “Avoided CO2 Emissions”, “CO2 equivalent Payback Time”). Moreover, the proposed KPIs are distributed according to the individual phases of the entire life-cycle of a related component of a renewable energy system, each time the environmental impact refers to, i.e. manufacturing, operational and end-of-life. Apart from that, the current paper presents a necessary base grounded approach, which can be followed for a holistic approach in environmental point of view of renewable-based technologies, by addressing the potential competing interests of the relevant stakeholders (e.g. profit for the market operator in contrast to low-cost services for the consumer). All in all, the scalar quantification of the environmental impact of multiple energy systems, through a list of proposed assessment criteria, being evaluated in terms of the selected repository of KPIs, enables the comparison on a fair basis of the available energy systems, irrespective if they are fossil-fuel or RES based ones. As a typical example, a simple standard model of a photovoltaic integrated with an electric battery is selected, for which indicative indicators are provide

    Novel Analytical and Numerical Methods in Heat Transfer Enhancement and Thermal Management

    Get PDF
    1Dipartimento di Ingegneria Industriale, Universita degli Studi di Napoli Federico II, 80125 Napoli, Italy 2Laboratoire de Modelisation et Simulation Multi Echelle, Equipe Transferts de Chaleur et de Matiere, Universite PARIS-EST, 77454 Marne-la-Vallee Cedex 2, France 3School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China 4Laboratory of Steam Boilers andThermal Plants, School of Mechanical Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece 5Mechanical and Aerospace Engineering Department, Rutgers, the State University of New Jersey, Piscataway, NJ 08854-8058, US

    Hybrid Adsorption-Compression Systems for Air Conditioning in Efficient Buildings: Design through Validated Dynamic Models

    Get PDF
    Hybrid sorption-compression systems are gaining interest for heating/cooling/ refrigeration purposes in different applications, since they allow exploiting the benefits of both technologies and a better utilization of renewable sources. However, design of such components is still difficult, due to the intrinsic complexity of the systems and the lack of reliable models. In particular, the combination of adsorption-compression cascade unit has not been widely explored yet and there are no simulations or sizing tools reported in the literature. In this context, the present paper describes a model of a hybrid adsorption-compression system, realised in Modelica language using the commercial software Dymola. The models of the main components of the sorption and vapour compression unit are described in details and their validation presented. In addition, the integrated model is used for proving the feasibility of the system under dynamic realistic conditions and an example of the technical sizing that the model is able to accomplish is given

    Experimental investigation of a thermally integrated Carnot battery using a reversible heat pump/organic Rankine cycle

    Full text link
    peer reviewedThe growth of renewable energy requires flexible, low-cost and efficient electrical storage systems to balance the mismatch between energy supply and demand. The Carnot battery (or Pumped Thermal Energy Storage) converts electric energy to thermal energy with a heat pump (HP) when electricity production is greater than demand; when electricity demand outstrips production,the Carnot battery generates power from two thermal storage reservoirs (Rankine mode). Classical Carnot batteries architectures do not achieve more than 60% roundtrip electric efficiency. However, innovative architectures, using waste heat recovery (thermally integrated Carnot batteries) are able to reach electrical power production of the power cycle larger than the electrical power consumption of the heat pump (power-to-power-ratio), increasing the value of the technology. It can be shown that the optimization of such a technology is a trade-off between the maximization of the power and the power-to-power ratio (depending on electricity prices among others). In this paper, the full development of a prototype of thermally integrated Carnot battery using a reversible heat pump/organic Rankine cycle (HP/ORC) is described. It includes the selection of the nominal design point, the architecture, the components and the sizing. This first experimental campaign showed a roundtrip electrical energy ratio of 72.5% with ORC efficiency of 5% (temperature lift is equal to 49 K) and COP of HP of 14.4 (temperaturelift is equal to 8 K). These results are very encouraging because the performance can easily be improved (probably up to 100% roundtrip electrical energy ratio) by optimizing the volumetric machine, working at larger scale, optimizing the control and thermal insulation.Also, the performance of the main components(volumetric machine and heat exchangers) is analyzed

    Experimental performance evaluation of a multi-diaphragm pump of a micro-ORC system

    Get PDF
    Abstract The performance of micro-scale ORC systems strongly depends on the performance of their key components. While the heat exchangers and expander have been extensively investigated, the pump has only received limited attention. The main purpose of this work is the experimental characterization of a multi-diaphragm positive displacement pump, integrated in an experimental ORC system with a rated power output of 4kWel. The study focuses on the experimental evaluation of the pump performance and on cavitation phenomena. A detailed presentation of the experimental procedure and results is supplied. A great effort has been spent in calculating the global and volumetric pump efficiencies for a wide range of operational conditions, which reach maximum values around 45-48% and 95%, respectively. With regards to cavitation issues, the effect of the available Net Positive Suction Head at the pump inlet has been deeply investigated both at partial and full load to obtain guidelines for stable operation. Finally, an extensive dataset of steady-state operating points has been used to calibrate an improved version of a semi-empirical model previously developed for positive displacement ORC pumps. Special attention has been given to the ability of the model to accurately predict the behaviour and performance of the pump at different, properly chosen, steady-state conditions. Relative errors in between 0.5%, for the outlet temperature, and 10%, for the electric power consumption, are achieved

    Thermo-economic analysis of an efficient lignite-fired power system integrated with flue gas fan mill pre-drying

    Full text link
    [EN] Lignite is a domestic strategic reserve of low rank coals in many countries for its abundant resource and competitive price. Combustion for power generation is still an important approach to its utilization. However, the high moisture content always results in low efficiencies of lignite-direct-fired power plants. Lignite pre-drying is thus proposed as an effective method to improve the energy efficiency. The present work focuses on the flue gas pre-dried lignite-fired power system (FPLPS), which is integrated with fan mill pulverizing system and waste heat recovery. The thermo-economic analysis model was developed to predict its energy saving potential at design conditions. The pre-drying upgrade factor was defined to express the coupling of pre-drying system with boiler system and the efficiency improvement effect. The energy saving potential of the FPLPS, when applied in a 600 MW supercritical power unit, was determined to be 1.48 %-pts. It was concluded that the improvement of boiler efficiency mainly resulted from the lowered boiler exhaust temperature after firing pre-dried low moisture content lignite and the lowered dryer exhaust gas temperature after pre-heating the boiler air supply.This work was supported by National Natural Science Foundation of China (NO. 51436006), the National Basic Research Program of China (973 Program, NO.2015CB251504), and the Fundamental Research Funds for the Central Universities.Han, X.; Wang, J.; Liu, M.; Karellas, S.; Yan, J. (2018). Thermo-economic analysis of an efficient lignite-fired power system integrated with flue gas fan mill pre-drying. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 261-268. https://doi.org/10.4995/IDS2018.2018.739326126
    • …
    corecore