178 research outputs found

    The Alzheimer's Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide

    Get PDF
    Background: The amyloid β\beta-protein (Aβ\beta) is believed to be the key mediator of Alzheimer's disease (AD) pathology. Aβ\beta is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Aβ\beta has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. Methodology/Principal Findings: Here, we provide data supporting an in vivo function for Aβ\beta as an antimicrobial peptide (AMP). Experiments used established in vitro assays to compare antimicrobial activities of Aβ\beta and LL-37, an archetypical human AMP. Findings reveal that Aβ\beta exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Aβ\beta levels. Consistent with Aβ\beta-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Aβ\beta antibodies. Conclusions/Significance: Our findings suggest Aβ\beta is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Aβ\beta-mediated pathology and has important implications for ongoing and future AD treatment strategies

    Non-Conjugated Small Molecule FRET for Differentiating Monomers from Higher Molecular Weight Amyloid Beta Species

    Get PDF
    Background: Systematic differentiation of amyloid (Aβ) species could be important for diagnosis of Alzheimer's disease (AD). In spite of significant progress, controversies remain regarding which species are the primary contributors to the AD pathology, and which species could be used as the best biomarkers for its diagnosis. These controversies are partially caused by the lack of reliable methods to differentiate the complicated subtypes of Aβ species. Particularly, differentiation of Aβ monomers from toxic higher molecular weight species (HrMW) would be beneficial for drug screening, diagnosis, and molecular mechanism studies. However, fast and cheap methods for these specific aims are still lacking. Principal Findings: We demonstrated the feasibility of a non-conjugated FRET (Förster resonance energy transfer) technique that utilized amyloid beta (Aβ) species as intrinsic platforms for the FRET pair assembly. Mixing two structurally similar curcumin derivatives that served as the small molecule FRET pair with Aβ40 aggregates resulted in a FRET signal, while no signal was detected when using Aβ40 monomer solution. Lastly, this FRET technique enabled us to quantify the concentrations of Aβ monomers and high molecular weight species in solution. Significance: We believe that this FRET technique could potentially be used as a tool for screening for inhibitors of Aβ aggregation. We also suggest that this concept could be generalized to other misfolded proteins/peptides implicated in various pathologies including amyloid in diabetes, prion in bovine spongiform encephalopathy, tau protein in AD, and α-synuclein in Parkinson disease.National Institute on Aging (K25AG036760

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    APOE ε4 moderates abnormal CSF-abeta-42 levels, while neurocognitive impairment is associated with abnormal CSF tau levels in HIV+ individuals – a cross-sectional observational study

    Get PDF
    Background: Cerebrospinal fluid (CSF) biomarkers Aβ1-42, t-tau and p-tau have a characteristic pattern in Alzheimer’s Disease (AD). Their roles in HIV-associated neurocognitive disorder (HAND) remains unclear. Methods: Adults with chronic treated HIV disease were recruited (n = 43, aged 56.7 ± 7.9; 32% aged 60+; median HIV duration 20 years, \u3e95% plasma and CSF HIV RNA \u3c50 cp/mL, on cART for a median 24 months). All underwent standard neuropsychological testing (61% had HAND), APOE genotyping (30.9% carried APOE ε4 and 7.1% were ε4 homozygotes) and a lumbar puncture. Concentrations of Aβ1-42, t-tau and p-tau were assessed in the CSF using commercial ELISAs. Current neurocognitive status was defined using the continuous Global Deficit Score, which grades impairment in clinically relevant categories. History of HAND was recorded. Univariate correlations informed multivariate models, which were corrected for nadir CD4-T cell counts and HIV duration. Results: Carriage of APOE ε4 predicted markedly lower levels of CSF Aβ1-42 in univariate (r = -.50; p = .001) and multivariate analyses (R2 = .25; p \u3c .0003). Greater levels of neurocognitive impairment were associated with higher CSF levels of p-tau in univariate analyses (r = .32; p = .03) and multivariate analyses (R2 = .10; p = .03). AD risk prediction cut-offs incorporating all three CSF biomarkers suggested that 12.5% of participants had a high risk for AD. Having a CSF-AD like profile was more frequent in those with current (p = .05) and past HIV-associated dementia (p = .03). Conclusions: Similarly to larger studies, APOE ε4 genotype was not directly associated with HAND, but moderated CSF levels of Aβ1-42 in a minority of participants. In the majority of participants, increased CSF p-tau levels were associated with current neurocognitive impairment. Combined CSF biomarker risk for AD in the current HIV+ sample is more than 10 times greater than in the Australian population of the same age. Larger prospective studies are warranted

    Association of Plasma Aß Peptides with Blood Pressure in the Elderly

    Get PDF
    Background Aß peptides are often considered as catabolic by-products of the amyloid ß protein precursor (APP), with unknown physiological functions. However, several biological properties have been tentatively attributed to these peptides, including a role in vasomotion. We assess whether plasma Aß peptide levels might be associated with systolic and diastolic blood pressure values (SBP and DBP, respectively). Methodology/Principal Findings Plasma Aß1-40 and Aß1-42 levels were measured using an xMAP-based assay in 1,972 individuals (none of whom were taking antihypertensive drugs) from 3 independent studies: the French population-based 3C and MONA-LISA (Lille) studies (n = 627 and n = 769, respectively) and the Australian, longitudinal AIBL study (n = 576). In the combined sample, the Aß1-42/ Aß1-40 ratio was significantly and inversely associated with SBP (p = 0.03) and a similar trend was observed for DBP (p = 0.06). Using the median age (69) as a cut-off, the Aß1-42/Aß1-40 ratio was strongly associated with both SBP and DBP in elderly individuals (p = 0.002 and p = 0.03, respectively). Consistently, a high Aß1-42/ Aß1-40 ratio was associated with a lower risk of hypertension in both the combined whole sample (odds ratio [OR], 0.71; 95% confidence interval [CI], 0.56-0.90) and (to an even greater extent) in the elderly subjects (OR, 0.53; 95% CI, 0.37–0.75). Lastly, all these associations appeared to be primarily driven by the level of plasma Aß1-40. Conclusion The plasma Aß1-42/Aß1-40 ratio is inversely associated with SBP, DBP and the risk of hypertension in elderly subjects, suggesting that Aß peptides affect blood pressure in vivo. These results may be particularly relevant in Alzheimer\u27s disease, in which a high Aß1-42/Aß1-40 plasma ratio is reportedly associated with a decreased risk of incident disease

    In Vivo and In Vitro Effects of Antituberculosis Treatment on Mycobacterial Interferon-γ T Cell Response

    Get PDF
    Background: In recent years, the impact of antituberculous treatment on interferon (IFN)-c response to Mycobacterium tuberculosis antigens has been widely investigated, but the results have been controversial. The objective of the present study was: i) to evaluate longitudinal changes of IFN-c response to M. tuberculosis-specific antigens in TB patients during antituberculous treatment by using the QuantiFERON-TB Gold (QFT-G) assay; ii) to compare the differences in T-cell response after a short or prolonged period of stimulation with mycobacterial antigens; iii) to assess the CD4+ and CD8+ T cells with effector/memory and central/memory phenotype; iv) to investigate the direct in vitro effects of antituberculous drugs on the secretion of IFN-c. Principal Findings: 38 TB patients was evaluated at baseline and at month 2 and 4 of treatment and at month 6 (treatment completion). 27 (71%) patients had a QFT-G reversion (positive to negative) at the end of therapy, while 11 (29%) TB patients remained QFT-G positive at the end of therapy. Among the 11 patients with persistent positive QFT-G results, six had a complete response to the treatment, while the remaining 5 patients did not have a resolution of the disease. All 27 patients who became QFT-G negative had a complete clinical and microbiological recovery of the TB disease. In these patients the release of IFN-c is absent even after a prolonged 6-day incubation with both ESAT-6 and CFP-10 antigens and the percentage of effector/memory T-cells phenotype was markedly lower than subjects with persistent positive QFT-G results. The in vitro study showed that antituberculous drugs did not exert any inhibitory effect on IFN-c production within the range of therapeutically achievable concentrations. Conclusions: The present study suggests that the decrease in the M. tuberculosis-specific T cells responses following successful anti-TB therapy may have a clinical value as a supplemental tool for the monitoring of the efficacy of pharmacologic intervention for active TB. In addition, the antituberculous drugs do not have any direct down-regulatory effect on the specific IFN-c response

    Association between IgM Anti-Herpes Simplex Virus and Plasma Amyloid-Beta Levels

    Get PDF
    OBJECTIVE: Herpes simplex virus (HSV) reactivation has been identified as a possible risk factor for Alzheimer's disease (AD) and plasma amyloid-beta (Aβ) levels might be considered as possible biomarkers of the risk of AD. The aim of our study was to investigate the association between anti-HSV antibodies and plasma Aβ levels. METHODS: The study sample consisted of 1222 subjects (73.9 y in mean) from the Three-City cohort. IgM and IgG anti-HSV antibodies were quantified using an ELISA kit, and plasma levels of Aβ(1-40) and Aβ(1-42) were measured using an xMAP-based assay technology. Cross-sectional analyses of the associations between anti-HSV antibodies and plasma Aβ levels were performed by multi-linear regression. RESULTS: After adjustment for study center, age, sex, education, and apolipoprotein E-e4 polymorphism, plasma Aβ(1-42) and Aβ(1-40) levels were specifically inversely associated with anti-HSV IgM levels (β = -20.7, P=0.001 and β = -92.4, P=0.007, respectively). In a sub-sample with information on CLU- and CR1-linked SNPs genotyping (n=754), additional adjustment for CR1 or CLU markers did not modify these associations (adjustment for CR1 rs6656401, β = -25.6, P=0.002 for Aβ(1-42) and β = -132.7, P=0.002 for Aβ(1-40;) adjustment for CLU rs2279590, β = -25.6, P=0.002 for Aβ(1-42) and β = -134.8, P=0.002 for Aβ(1-40)). No association between the plasma Aβ(1-42)-to-Aβ(1-40) ratio and anti-HSV IgM or IgG were evidenced. CONCLUSION: High anti-HSV IgM levels, markers of HSV reactivation, are associated with lower plasma Aβ(1-40) and Aβ(1-42) levels, which suggest a possible involvement of the virus in the alterations of the APP processing and potentially in the pathogenesis of AD in human

    Alzheimer's Disease Amyloid-β Links Lens and Brain Pathology in Down Syndrome

    Get PDF
    Down syndrome (DS, trisomy 21) is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans. In DS, triplication of chromosome 21 invariably includes the APP gene (21q21) encoding the Alzheimer's disease (AD) amyloid precursor protein (APP). Triplication of the APP gene accelerates APP expression leading to cerebral accumulation of APP-derived amyloid-β peptides (Aβ), early-onset AD neuropathology, and age-dependent cognitive sequelae. The DS phenotype complex also includes distinctive early-onset cerulean cataracts of unknown etiology. Previously, we reported increased Aβ accumulation, co-localizing amyloid pathology, and disease-linked supranuclear cataracts in the ocular lenses of subjects with AD. Here, we investigate the hypothesis that related AD-linked Aβ pathology underlies the distinctive lens phenotype associated with DS. Ophthalmological examinations of DS subjects were correlated with phenotypic, histochemical, and biochemical analyses of lenses obtained from DS, AD, and normal control subjects. Evaluation of DS lenses revealed a characteristic pattern of supranuclear opacification accompanied by accelerated supranuclear Aβ accumulation, co-localizing amyloid pathology, and fiber cell cytoplasmic Aβ aggregates (∼5 to 50 nm) identical to the lens pathology identified in AD. Peptide sequencing, immunoblot analysis, and ELISA confirmed the identity and increased accumulation of Aβ in DS lenses. Incubation of synthetic Aβ with human lens protein promoted protein aggregation, amyloid formation, and light scattering that recapitulated the molecular pathology and clinical features observed in DS lenses. These results establish the genetic etiology of the distinctive lens phenotype in DS and identify the molecular origin and pathogenic mechanism by which lens pathology is expressed in this common chromosomal disorder. Moreover, these findings confirm increased Aβ accumulation as a key pathogenic determinant linking lens and brain pathology in both DS and AD

    Combinations of QT-prolonging drugs: towards disentangling pharmacokinetic and pharmaco-dynamic effects in their potentially additive nature.

    Get PDF
    Background: Whether arrhythmia risks will increase if drugs with electrocardiographic (ECG) QT-prolonging properties are combined is generally supposed but not well studied. Based on available evidence, the Arizona Center for Education and Research on Therapeutics (AZCERT) classification defines the risk of QT prolongation for exposure to single drugs. We aimed to investigate how combining AZCERT drug categories impacts QT duration and how relative drug exposure affects the extent of pharmacodynamic drug–drug interactions. Methods: In a cohort of 2558 psychiatric inpatients and outpatients, we modeled whether AZCERT class and number of coprescribed QT-prolonging drugs correlates with observed rate-corrected QT duration (QTc) while also considering age, sex, inpatient status, and other QTc-prolonging risk factors. We concurrently considered administered drug doses and pharmacokinetic interactions modulating drug clearance to calculate individual weights of relative exposure with AZCERT drugs. Because QTc duration is concentration-dependent, we estimated individual drug exposure with these drugs and included this information as weights in weighted regression analyses. Results: Drugs attributing a ‘known’ risk for clinical consequences were associated with the largest QTc prolongations. However, the presence of at least two versus one QTc-prolonging drug yielded nonsignificant prolongations [exposure-weighted parameter estimates with 95% confidence intervals for ‘known’ risk drugs + 0.93 ms (–8.88;10.75)]. Estimates for the ‘conditional’ risk class increased upon refinement with relative drug exposure and coadministration of a ‘known’ risk drug as a further risk factor. Conclusions: These observations indicate that indiscriminate combinations of QTc-prolonging drugs do not necessarily result in additive QTc prolongation and suggest that QT prolongation caused by drug combinations strongly depends on the nature of the combination partners and individual drug exposure. Concurrently, it stresses the value of the AZCERT classification also for the risk prediction of combination therapies with QT-prolonging drugs
    corecore