11 research outputs found

    Geographic Variation in Temperature Tolerance as an Indicator of Potential Population Responses to Climate Change

    Get PDF
    The temperature tolerances of individuals in geographically separated populations of a single species can be used as indicators of each population\u27s potential to persist or become extinct in response to climate change. We evaluated the population-level variation in temperature tolerance in populations of several marine invertebrate taxa, including bryozoans, tunicates, bivalves, and gastropods, separated by distances of \u3c 200 km to \u3e 5000 km. We then combined physiological thermotolerance data with current temperature data and climate change predictions to predict which of these populations may be most vulnerable to future changes. In a trans-continental comparison of four subtidal epibenthic species, we show that populations on the east coast of the United States, which experienced higher habitat temperatures than those on the west coast, had higher thermal tolerances but lived closer to individuals\u27 tolerance limits. Similarly, temperature tolerances varied between western and eastern Atlantic populations of the mussel Mytilus edulis; however, these differences only emerged after repeated exposures to high temperatures. Furthermore, the less thermotolerant M. edulis population in the western Atlantic was more susceptible to temperature increases, as evidenced by a recent range contraction. Thus, for both the subtidal epibenthic and intertidal mussel species, we identified the western Atlantic as a ‘hot spot’ of populations susceptible to climate change compared to those in the eastern Pacific and eastern Atlantic, respectively. Finally, because current tolerances are not the sole indicators of individuals\u27 abilities to cope with temperature increases, we also assessed the possibility for acclimatization to facilitate the persistence of populations via the buffering of temperature effects. We show that, for four populations of intertidal Littorina snail species in the northwest Atlantic, most populations were able to overcome geographic differences in temperature tolerance via acclimation. When acclimation capacity is low, the potential for “rescue” may depend on the particular species\u27 life-history strategy and dispersal ability. For example, although individuals from the coldest-adapted population of Littorina littorea were unable to acclimate as quickly as those from more southern populations, this species has a pelagic larval stage and, thus, the greatest dispersal potential of these littorines. Together, these studies highlight the importance of considering variation in temperature tolerance between populations within species to improve the forecasting of changes in the abundances and distributions of species in response to climate warming

    Global change, global trade, and the next wave of plant invasions

    Get PDF
    Copyright © 2012 Ecological Society of AmericaMany non-native plants in the US have become problematic invaders of native and managed ecosystems, but a new generation of invasive species may be at our doorstep. Here, we review trends in the horticultural trade and invasion patterns of previously introduced species and show that novel species introductions from emerging horticultural trade partners are likely to rapidly increase invasion risk. At the same time, climate change and water restrictions are increasing demand for new types of species adapted to warm and dry environments. This confluence of forces could expose the US to a range of new invasive species, including many from tropical and semiarid Africa as well as the Middle East. Risk assessment strategies have proven successful elsewhere at identifying and preventing invasions, although some modifications are needed to address emerging threats. Now is the time to implement horticulture import screening measures to prevent this new wave of plant invasions.National Science Foundatio

    Will extreme climatic events facilitate biological invasions?

    Get PDF
    Copyright © 2012 Ecological Society of AmericaExtreme climatic events (ECEs) – such as unusual heat waves, hurricanes, floods, and droughts – can dramatically affect ecological and evolutionary processes, and these events are projected to become more frequent and more intense with ongoing climate change. However, the implications of ECEs for biological invasions remain poorly understood. Using concepts and empirical evidence from invasion ecology, we identify mechanisms by which ECEs may influence the invasion process, from initial introduction through establishment and spread. We summarize how ECEs can enhance invasions by promoting the transport of propagules into new regions, by decreasing the resistance of native communities to establishment, and also sometimes by putting existing non-native species at a competitive disadvantage. Finally, we outline priority research areas and management approaches for anticipating future risks of unwanted invasions following ECEs. Given predicted increases in both ECE occurrence and rates of species introductions around the globe during the coming decades, there is an urgent need to understand how these two processes interact to affect ecosystem composition and functioning.National Science Foundatio

    Integrated Assessment of Biological Invasions

    Get PDF
    As the main witnesses of the ecological and economic impacts of invasions on ecosystems around the world, ecologists seek to provide the relevant science that informs managers about the potential for invasion of specific organisms in their region(s) of interest. Yet, the assorted literature that could inform such forecasts is rarely integrated to do so, and further, the diverse nature of the data available complicates synthesis and quantitative prediction. Here we present a set of analytical tools for synthesizing different levels of distributional and/or demographic data to produce meaningful assessments of invasion potential that can guide management at multiple phases of ongoing invasions, from dispersal to colonization to proliferation. We illustrate the utility of data-synthesis and data-model assimilation approaches with case studies of three well-known invasive species—a vine, a marine mussel, and a freshwater crayfish—under current and projected future climatic conditions. Results from the integrated assessments reflect the complexity of the invasion process and show that the most relevant climatic variables can have contrasting effects or operate at different intensities across habitat types. As a consequence, for two of the study species climate trends will increase the likelihood of invasion in some habitats and decrease it in others. Our results identified and quantified both bottlenecks and windows of opportunity for invasion, mainly related to the role of human uses of the landscape or to disruption of the flow of resources. The approach we describe has a high potential to enhance model realism, explanatory insight, and predictive capability, generating information that can inform management decisions and optimize phase-specific prevention and control efforts for a wide range of biological invasions

    Will Extreme Climatic Events Facilitate Biological Invasions?

    Get PDF
    Extreme climatic events (ECEs) – such as unusual heat waves, hurricanes, floods, and droughts – can dramatically affect ecological and evolutionary processes, and these events are projected to become more frequent and more intense with ongoing climate change. However, the implications of ECEs for biological invasions remain poorly understood. Using concepts and empirical evidence from invasion ecology, we identify mechanisms by which ECEs may influence the invasion process, from initial introduction through establishment and spread. We summarize how ECEs can enhance invasions by promoting the transport of propagules into new regions, by decreasing the resistance of native communities to establishment, and also sometimes by putting existing non-native species at a competitive disadvantage. Finally, we outline priority research areas and management approaches for anticipating future risks of unwanted invasions following ECEs. Given predicted increases in both ECE occurrence and rates of species introductions around the globe during the coming decades, there is an urgent need to understand how these two processes interact to affect ecosystem composition and functioning

    The Impacts of Climate Change in Coastal Marine Systems

    Get PDF
    Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few \u27leverage species\u27 may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations\u27 ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond
    corecore