170 research outputs found

    Recent advances in management of cryptococcal meningitis: commentary

    Get PDF
    Cryptococcal meningitis remains a substantial health burden with high morbidity, particularly in developing countries. Antifungal treatment regimens are guided by host factors, severity of illness (including presence of complications), and causative cryptococcal species. Recent clinical studies indicate the need for rapidly fungicidal induction therapy regimens using amphotericin B in combination with flucytosine for optimal outcomes. Maintenance therapy with fluconazole is necessary until recovery of immune function. Cryptococcus gattii meningitis requires prolonged induction/eradication therapy. Prompt control of raised intracranial pressure or hydrocephalus is essential. Clinicians should be vigilant for immune restoration-like features. Adjuvant surgery, corticosteroids, and/or recombinant interferon-gamma may be required for large cryptococcomas, cerebral edema, or refractory infection

    Limited Activity Of Miltefosine In Murine Models Of Cryptococcal Meningoencephalitis And Disseminated Cryptococcosis

    Get PDF
    Miltefosine is an alkyl phosphocholine with good oral bioavailability and in vitro activity against Cryptococcus species that has gained interest as an additional agent for cryptococcal infections. Our objective was to further evaluate the in vivo efficacy of miltefosine in experimental in vivo models of cryptococcal meningoencephalitis and disseminated cryptococcosis. Mice were infected intracranially or intravenously with either C. neoformans USC1597 or H99. Miltefosine treatment (1.8 to 45 mg/kg of body weight orally once daily) began at either 1 h or 1 day postinoculation. Fluconazole (10 mg/kg orally twice daily) or amphotericin B deoxycholate (3 mg/kg intraperitoneally once daily) served as positive controls. In our standard models, miltefosine did not result in significant improvements in survival or reductions in fungal burden against either C. neoformans isolate. There was a trend toward improved survival with miltefosine at 7.2 mg/kg against disseminated cryptococcosis with the H99 strain but only at a low infecting inoculum. In contrast, both fluconazole and amphotericin B significantly improved survival in mice with cryptococcal meningoencephalitis and disseminated cryptococcosis due to USC1597. Amphotericin B also improved survival against both cryptococcal infections caused by H99. Combination therapy with miltefosine demonstrated neither synergy nor antagonism in both models. These results demonstrate limited efficacy of miltefosine and suggest caution with the potential use of this agent for the treatment of C. neoformans infections.Pharmac

    Persistence of the Omicron variant of SARS-CoV-2 in Australia: The impact of fluctuating social distancing

    Full text link
    We modelled emergence and spread of the Omicron variant of SARS-CoV-2 in Australia between December 2021 and June 2022. This pandemic stage exhibited a diverse epidemiological profile with emergence of co-circulating sub-lineages of Omicron, further complicated by differences in social distancing behaviour which varied over time. Our study delineated distinct phases of the Omicron-associated pandemic stage, and retrospectively quantified the adoption of social distancing measures, fluctuating over different time periods in response to the observable incidence dynamics. We also modelled the corresponding disease burden, in terms of hospitalisations, intensive care unit occupancy, and mortality. Supported by good agreement between simulated and actual health data, our study revealed that the nonlinear dynamics observed in the daily incidence and disease burden were determined not only by introduction of sub-lineages of Omicron, but also by the fluctuating adoption of social distancing measures. Our high-resolution model can be used in design and evaluation of public health interventions during future crises.Comment: 30 pages, 12 figures, source code: https://doi.org/10.5281/zenodo.732567

    Phytotoxicity and cytogenotoxicity of water and sediment of urban stream in bioassay with Lactuca sativa

    Get PDF
    The aim of this study was to evaluate the spatial and temporal influence of the phytotoxicity and cytogenotoxicity of water and sediment of urban stream on the germination and initial growth of Lactuca sativa. Samples were collected from water and sediment at five sites of the Pântano Stream (Alfenas, Minas Gerais) during the period from October 2010 to July 2011. The concentrations of the metals Cd, Pb and Zn were quantified. Moreover, phytotoxicity and cytogenotoxicity were tested with samples of water and aqueous extracts of sediments. The evaluated end points were the germination rate, root length, fresh and dry weight, mitotic index and frequency of chromosomal abnormalities. Higher levels of Cd and Pb were verified in water samples collected during the rainy months. Water and sediment showed phytotoxic effect on germination, fresh weight and dry weight of Lactuca sativa. Root length was stimulated and only samples of water reduced the mitotic index. Significant temporal variation related to rainfall was observed only for phytotoxicity tests.Objetivou-se, com este trabalho, avaliar a influência espacial e temporal da fitotoxicidade e da citogenotoxicidade da água e do sedimento de córrego urbano quanto às características germinativas e de crescimento inicial de Lactuca sativa. Amostras de água e de sedimento foram coletadas em 5 pontos do Córrego do Pântano (Alfenas, Minas Gerais), no período de outubro de 2010 a julho de 2011 e as concentrações dos metais Cd, Pb e Zn foram quantificadas. Os ensaios de fitotoxicidade e de citogenotoxicidade foram realizados com as amostras de água e extratos aquosos dos sedimentos. Os parâmetros avaliados foram taxa de germinação, comprimento de raízes, biomassa fresca e seca, índice mitótico e a frequência de anormalidades cromossômicas. Constataram-se maiores concentrações de Cd e Pb nas amostras de água coletadas nos meses com a ocorrência de precipitações pluviométricas. Água e sedimento apresentaram efeito fitotóxico sobre germinação, biomassa fresca e seca de Lactuca sativa. O comprimento de raízes foi estimulado e apenas as amostras de água reduziram o índice mitótico. Evidenciou-se, também, variação temporal significativa relacionada com o regime pluviométrico apenas para o teste de fitotoxicidade.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)UNIFAL Instituto de Ciências da NaturezaUNIFAL Instituto de Ciências ExatasUNIFESPUNIFESPSciEL

    Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing

    Get PDF
    BACKGROUND Amino acid substitutions in the target enzyme Erg11p of azole antifungals contribute to clinically-relevant azole resistance in Candida albicans. A simple molecular method for rapid detection of ERG11 gene mutations would be an advantage as a screening tool to identify potentially-resistant strains and to track their movement. To complement DNA sequencing, we developed a padlock probe and rolling circle amplification (RCA)-based method to detect a series of mutations in the C. albicans ERG11 gene using "reference" azole-resistant isolates with known mutations. The method was then used to estimate the frequency of ERG11 mutations and their type in 25 Australian clinical C. albicans isolates with reduced susceptibility to fluconazole and in 23 fluconazole-susceptible isolates. RCA results were compared DNA sequencing. RESULTS The RCA assay correctly identified all ERG11 mutations in eight "reference" C. albicans isolates. When applied to 48 test strains, the RCA method showed 100% agreement with DNA sequencing where an ERG11 mutation-specific probe was used. Of 20 different missense mutations detected by sequencing in 24 of 25 (96%) isolates with reduced fluconazole susceptibility, 16 were detected by RCA. Five missense mutations were detected by both methods in 18 of 23 (78%) fluconazole-susceptible strains. DNA sequencing revealed that mutations in non-susceptible isolates were all due to homozygous nucleotide changes. With the exception of the mutations leading to amino acid substitution E266D, those in fluconazole-susceptible strains were heterozygous. Amino acid substitutions common to both sets of isolates were D116E, E266D, K128T, V437I and V488I. Substitutions unique to isolates with reduced fluconazole susceptibility were G464 S (n = 4 isolates), G448E (n = 3), G307S (n = 3), K143R (n = 3) and Y123H, S405F and R467K (each n = 1). DNA sequencing revealed a novel substitution, G450V, in one isolate. CONCLUSION The sensitive RCA assay described here is a simple, robust and rapid (2 h) method for the detection of ERG11 polymorphisms. It showed excellent concordance with ERG11 sequencing and is a potentially valuable tool to track the emergence and spread of azole-resistant C. albicans and to study the epidemiology of ERG11 mutations. The RCA method is applicable to the study of azole resistance in other fungi.Huiping Wang, Fanrong Kong, Tania C Sorrell, Bin Wang, Paul McNicholas, Namfon Pantarat, David Ellis, Meng Xiao, Fred Widmer and Sharon CA Che

    Assignment of Reference 5’-end 16S rDNA Sequences and Species-Specific Sequence Polymorphisms Improves Species Identification of Nocardia

    Get PDF
    16S rDNA sequence analysis is the most accurate method for definitive species identification of nocardiae. However, conflicting results can be found due to sequence errors in gene databases. This study tested the feasibility of species identification of Nocardia by partial (5’-end 606-bp) 16S rDNA sequencing, based on sequence comparison with “reference” sequences of well-annotated strains. This new approach was evaluated using 96 American Type Culture Collection (n=6), and clinical (n=90) Nocardia isolates. Nucleotide sequence-based polymorphisms within species were indicative of “sequence types” for that species. Sequences were compared with those in the GenBank, Bioinformatics Bacteria Identification and Ribosomal Database Project databases. Compared with the reference sequence set, all 96 isolates were correctly identified using the criterion of ≥99% sequence similarity. Seventy-eight (81.3%) were speciated by database comparison; alignment with reference sequences resolved the identity of 14 (15%) isolates whose sequences yielded 100% similarity to sequences in GenBank under >1 species designation. Of 90 clinical isolates, the commonest species was Nocardia nova (33.3%) followed by Nocardia cyriacigeorgica (26.7%). Recently-described or uncommon species included Nocardia veterana (4.4%), Nocarida bejingensis (2.2%) and, Nocardia abscessus and Nocardia arthriditis (each n=1). Nocardia asteroides sensu stricto was rare (n=1). There were nine sequence types of N. nova, three of Nocardia brasiliensis with two each of N. cyriacigeorgica and Nocardia farcinica. Thirteen novel sequences were identified. Alignment of sequences with reference sequences facilitated species identification of Nocardia and allowed delineation of sequence types within species, suggesting that such a barcoding approach can be clinically useful for identification of bacteria

    Clinical Utility of the Cryptococcal Antigen Lateral Flow Assay in a Diagnostic Mycology Laboratory

    Get PDF
    Abstract Background: Cryptococcus neoformans causes life-threatening meningitis. A recently introduced lateral flow immunoassay (LFA) to detect cryptococcal antigen (CRAG) is reportedly more rapid and convenient than standard latex agglutination (LA), but has not yet been evaluated in a diagnostic laboratory setting

    Whole Genome Sequencing of Australian Candida glabrata Isolates Reveals Genetic Diversity and Novel Sequence Types

    Get PDF
    Candida glabrata is a pathogen with reduced susceptibility to azoles and echinocandins. Analysis by traditional multilocus sequence typing (MLST) has recognized an increasing number of sequence types (STs), which vary with geography. Little is known about STs of C. glabrata in Australia. Here, we utilized whole genome sequencing (WGS) to study the genetic diversity of 51 Australian C. glabrata isolates and sought associations between STs over two time periods (2002–2004, 2010–2017), and with susceptibility to fluconazole by principal component analysis (PCA). Antifungal susceptibility was determined using Sensititre YeastOneTM Y010 methodology and WGS performed on the NextSeq 500 platform (Illumina) with in silico MLST STs inferred by WGS data. Single nucleotide polymorphisms (SNPs) in genes linked to echinocandin, azole and 5-fluorocytosine resistance were analyzed. Of 51 isolates, WGS identified 18 distinct STs including four novel STs (ST123, ST124, ST126, and ST127). Four STs accounted for 49% of isolates (ST3, 15.7%; ST83, 13.7%; ST7, 9.8%; ST26, 9.8%). Split-tree network analysis resolved isolates to terminal branches; many of these comprised multiple isolates from disparate geographic settings but four branches contained Australian isolates only. ST3 isolates were common in Europe, United States and now Australia, whilst ST8 and ST19, relatively frequent in the United States, were rare/absent amongst our isolates. There was no association between ST distribution (genomic similarity) and the two time periods or with fluconazole susceptibility. WGS identified mutations in the FKS1 (S629P) and FKS2 (S663P) genes in three, and one, echinocandin-resistant isolate(s), respectively. Both mutations confer phenotypic drug resistance. Twenty-five percent (13/51) of isolates were fluconazole-resistant (MIC ≥ 64 μg/ml) of which 9 (18%) had non wild-type MICs to voriconazole and posaconazole. Multiple SNPs were present in genes linked to azole resistance such as CgPDR1 and CgCDR1, as well as several in MSH2; however, SNPs occurred in both azole-susceptible and azole-resistant isolates. Although no particular SNP in these genes was definitively associated with resistance, azole-resistant/non-wild type isolates had a propensity to harbor SNPs resulting in amino acid substitutions in Pdr1 beyond the first 250 amino acid positions. The presence of SNPs may be markers of STs. Our study shows the value of WGS for high-resolution sequence typing of C. glabrata, discovery of novel STs and potential to monitor trends in genetic diversity. WGS assessment for echinocandin resistance augments phenotypic susceptibility testing

    Cryptococcus gattii in North American Pacific Northwest: whole-population genome analysis provides insights into species evolution and dispersal

    Get PDF
    The emergence of distinct populations of Cryptococcus gattii in the temperate North American Pacific Northwest (PNW) was surprising, as this species was previously thought to be confined to tropical and semitropical regions. Beyond a new habitat niche, the dominant emergent population displayed increased virulence and caused primary pulmonary disease, as opposed to the predominantly neurologic disease seen previously elsewhere. Whole-genome sequencing was performed on 118 C. gattii isolates, including the PNW subtypes and the global diversity of molecular type VGII, to better ascertain the natural source and genomic adaptations leading to the emergence of infection in the PNW. Overall, the VGII population was highly diverse, demonstrating large numbers of mutational and recombinational events; however, the three dominant subtypes from the PNW were of low diversity and were completely clonal. Although strains of VGII were found on at least five continents, all genetic subpopulations were represented or were most closely related to strains from South America. The phylogenetic data are consistent with multiple dispersal events from South America to North America and elsewhere. Numerous gene content differences were identified between the emergent clones and other VGII lineages, including genes potentially related to habitat adaptation, virulence, and pathology. Evidence was also found for possible gene introgression from Cryptococcus neoformans var. grubii that is rarely seen in global C. gattii but that was present in all PNW populations. These findings provide greater understanding of C. gattii evolution in North America and support extensive evolution in, and dispersal from, South America. Importance: Cryptococcus gattii emerged in the temperate North American Pacific Northwest (PNW) in the late 1990s. Beyond a new environmental niche, these emergent populations displayed increased virulence and resulted in a different pattern of clinical disease. In particular, severe pulmonary infections predominated in contrast to presentation with neurologic disease as seen previously elsewhere. We employed population-level whole-genome sequencing and analysis to explore the genetic relationships and gene content of the PNW C. gattii populations. We provide evidence that the PNW strains originated from South America and identified numerous genes potentially related to habitat adaptation, virulence expression, and clinical presentation. Characterization of these genetic features may lead to improved diagnostics and therapies for such fungal infections. The data indicate that there were multiple recent introductions of C. gattii into the PNW. Public health vigilance is warranted for emergence in regions where C. gattii is not thought to be endemic

    Long-read sequencing based clinical metagenomics for the detection and confirmation of Pneumocystis jirovecii directly from clinical specimens: A paradigm shift in mycological diagnostics

    Get PDF
    The advent of next generation sequencing technologies has enabled the characterization of the genetic content of entire communities of organisms, including those in clinical specimens, without prior culturing. The MinION from Oxford Nanopore Technologies offers real-time, direct sequencing of long DNA fragments directly from clinical samples. The aim of this study was to assess the ability of unbiased, genome-wide, long-read, shotgun sequencing using MinION to identify Pneumocystis jirovecii directly from respiratory tract specimens and to characterize the associated mycobiome. Pneumocystis pneumonia (PCP) is a life-threatening fungal disease caused by P. jirovecii. Currently, the diagnosis of PCP relies on direct microscopic or real-time quantitative polymerase chain reaction (PCR) examination of respiratory tract specimens, as P. jirovecii cannot be cultured readily in vitro. P. jirovecii DNA was detected in bronchoalveolar lavage (BAL) and induced sputum (IS) samples from three patients with confirmed PCP. Other fungi present in the associated mycobiome included known human pathogens (Aspergillus, Cryptococcus, Pichia) as well as commensal species (Candida, Malassezia, Bipolaris). We have established optimized sample preparation conditions for the generation of high-quality data, curated databases, and data analysis tools, which are key to the application of long-read MinION sequencing leading to a fundamental new approach in fungal diagnostics.This study was supported by a National Health and Medical Research Council of Australia (NH&MRC) grant [no. APP1121936] to W.M., S.C., T.C.S., and Western Sydney Local Health District Research & Education Network Research Grant Scheme to W.M., T.C.S., S.C., and L.I. B.S. is supported by an Australian Research Council Future Fellowship FT180100024, and Y.H., E.S., J.R., and B.S. are supported by The Hermon Slade Foundation grant HSF_17_04. T.C.S. is a Sydney Medical Foundation Fello
    corecore