51 research outputs found

    Ab Initio Study of Phase Stability in Doped TiO2

    Full text link
    Ab-initio density functional theory (DFT) calculations of the relative stability of anatase and rutile polymorphs of TiO2 were carried using all-electron atomic orbitals methods with local density approximation (LDA). The rutile phase exhibited a moderate margin of stability of ~ 3 meV relative to the anatase phase in pristine material. From computational analysis of the formation energies of Si, Al, Fe and F dopants of various charge states across different Fermi level energies in anatase and in rutile, it was found that the cationic dopants are most stable in Ti substitutional lattice positions while formation energy is minimised for F- doping in interstitial positions. All dopants were found to considerably stabilise anatase relative to the rutile phase, suggesting the anatase to rutile phase transformation is inhibited in such systems with the dopants ranked F>Si>Fe>Al in order of anatase stabilisation strength. Al and Fe dopants were found to act as shallow acceptors with charge compensation achieved through the formation of mobile carriers rather than the formation of anion vacancies

    International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database - the quality controlled standard tool for routine identification of human and animal pathogenic fungi

    Get PDF
    Human and animal fungal pathogens are a growing threat worldwide leading to emerging infections and creating new risks for established ones. There is a growing need for a rapid and accurate identification of pathogens to enable early diagnosis and targeted antifungal therapy. Morphological and biochemical identification methods are time-consuming and require trained experts. Alternatively, molecular methods, such as DNA barcoding, a powerful and easy tool for rapid monophasic identification, offer a practical approach for species identification and less demanding in terms of taxonomical expertise. However, its wide-spread use is still limited by a lack of quality-controlled reference databases and the evolving recognition and definition of new fungal species/complexes. An international consortium of medical mycology laboratories was formed aiming to establish a quality controlled ITS database under the umbrella of the ISHAM working group on "DNA barcoding of human and animal pathogenic fungi." A new database, containing 2800 ITS sequences representing 421 fungal species, providing the medical community with a freely accessible tool at http://www.isham.org and http://its.mycologylab.org/ to rapidly and reliably identify most agents of mycoses, was established. The generated sequences included in the new database were used to evaluate the variation and overall utility of the ITS region for the identification of pathogenic fungi at intra-and interspecies level. The average intraspecies variation ranged from 0 to 2.25%. This highlighted selected pathogenic fungal species, such as the dermatophytes and emerging yeast, for which additional molecular methods/genetic markers are required for their reliable identification from clinical and veterinary specimens.This study was supported by an National Health and Medical Research Council of Australia (NH&MRC) grant [#APP1031952] to W Meyer, S Chen, V Robert, and D Ellis; CNPq [350338/2000-0] and FAPERJ [E-26/103.157/2011] grants to RM Zancope-Oliveira; CNPq [308011/2010-4] and FAPESP [2007/08575-1] Fundacao de Amparo Pesquisa do Estado de So Paulo (FAPESP) grants to AL Colombo; PEst-OE/BIA/UI4050/2014 from Fundacao para a Ciencia e Tecnologia (FCT) to C Pais; the Belgian Science Policy Office (Belspo) to BCCM/IHEM; the MEXBOL program of CONACyT-Mexico, [ref. number: 1228961 to ML Taylor and [122481] to C Toriello; the Institut Pasteur and Institut de Veil le Sanitaire to F Dromer and D Garcia-Hermoso; and the grants from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and the Fundacao de Amparo a Pesquisa do Estado de Goias (FAPEG) to CM de Almeida Soares and JA Parente Rocha. I Arthur would like to thank G Cherian, A Higgins and the staff of the Molecular Diagnostics Laboratory, Division of Microbiology and Infectious Diseases, Path West, QEII Medial Centre. Dromer would like to thank for the technical help of the sequencing facility and specifically that of I, Diancourt, A-S Delannoy-Vieillard, J-M Thiberge (Genotyping of Pathogens and Public Health, Institut Pasteur). RM Zancope-Oliveira would like to thank the Genomic/DNA Sequencing Platform at Fundacao Oswaldo Cruz-PDTIS/FIOCRUZ [RPT01A], Brazil for the sequencing. B Robbertse and CL Schoch acknowledge support from the Intramural Research Program of the NIH, National Library of Medicine. T Sorrell's work is funded by the NH&MRC of Australia; she is a Sydney Medical School Foundation Fellow.info:eu-repo/semantics/publishedVersio

    Review of the anatase to rutile phase transformation

    Full text link

    The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2

    No full text
    The agglomeration, electrokinetic properties and electrophoretic deposition behaviour of aqueous suspensions of ZrO2 with carboxylic acid additives were studied in comparison with conventional pH adjustment. It was found that citric acid imparted negative zeta-potential values and electrosteric stabilisation to particles in suspensions at all pH levels. The examination of additions of carboxylic acids to ZrO2 suspensions revealed that these reagents cause a sharp drop in zeta-potential at distinct addition levels, which correspond to surface saturation of the particles with negatively charged carboxylate groups. Adsorption cross sections of citric acid, EDTA and oxalic acid were evaluated from these results, showing that both citric acid and EDTA coordinate to ZrO2 surfaces by two carboxylate groups while oxalic acid is coordinated by one group. The use of carboxylic acids was shown to facilitate superior electrophoretic deposition in comparison with zeta-potential modification by conventional pH adjustment through improved suspension stability. \ua9 2011 Elsevier Ltd

    Morphology and Photocatalytic Activity of Highly Oriented Mixed Phase Titanium Dioxide Thin Films

    Full text link
    Thin TiO2 films on quartz substrates were prepared by spin coating of undoped and metal-ion-doped Sol-Gel precursors. These films were characterised by Scanning Electron Microscopy, Laser Raman Microspectroscopy, X-ray Diffraction and UV-Vis Transmission. The photocatalytic performances of the films were assessed by the photo-degradation of methylene-blue in aqueous solution under UV irradiation. Films exhibited a high degree of orientation and a thermal stabilization of the anatase phase as a result of substrate effects. In the absence of dopants, the rutile phase formed as parallel bands in the anatase which broadened as the transformation progressed. TiO2 films doped or co-doped with transition metals exhibited the formation of rutile in segregated clusters at temperatures under ~800°C as a result of increased levels of oxygen vacancies. Photocatalytic activity of the films synthesised in this work was low as likely result of poor TiO2 surface contact with dye molecules in solution. The presence of transition metal dopants appears detrimental to photocatalytic activity while the performance of mixed phase films was not observed to differ significantly from single phase material
    corecore