22 research outputs found

    Finite-size errors in continuum quantum Monte Carlo calculations

    Get PDF
    We analyze the problem of eliminating finite-size errors from quantum Monte Carlo (QMC) energy data. We demonstrate that both (i) adding a recently proposed [S. Chiesa et al., Phys. Rev. Lett. 97, 076404 (2006)] finite-size correction to the Ewald energy and (ii) using the model periodic Coulomb (MPC) interaction [L. M. Fraser et al., Phys. Rev. B 53, 1814 (1996); P. R. C. Kent et al., Phys. Rev. B 59, 1917 (1999); A. J. Williamson et al., Phys. Rev. B 55, 4851 (1997)] are good solutions to the problem of removing finite-size effects from the interaction energy in cubic systems, provided the exchange-correlation (XC) hole has converged with respect to system size. However, we find that the MPC interaction distorts the XC hole in finite systems, implying that the Ewald interaction should be used to generate the configuration distribution. The finite-size correction of Chiesa et al. is shown to be incomplete in systems of low symmetry. Beyond-leading-order corrections to the kinetic energy are found to be necessary at intermediate and high densities, and we investigate the effect of adding such corrections to QMC data for the homogeneous electron gas. We analyze finite-size errors in two-dimensional systems and show that the leading-order behavior differs from that which has hitherto been supposed. We compare the efficiency of different twist-averaging methods for reducing single-particle finite-size errors and we examine the performance of various finite-size extrapolation formulas. Finally, we investigate the system-size scaling of biases in diffusion QMC

    Pseudo-Hermitian continuous-time quantum walks

    Full text link
    In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian continuous-time quantum walk. We introduce a method to obtain the probability distribution of walk on any vertex and then study a specific system. We observe that the probability distribution on certain vertices increases compared to that of the Hermitian case. This formalism makes the transport process faster and can be useful for search algorithms.Comment: 13 page, 7 figure

    Isolation and antigenic characterisation of UK isolates of Borrelia burgdorferi

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX183086 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Production of full length and splicing form of chymosin using pETexpression system in E-coli and investigation its enzyme activity and preplasmic secretion

    No full text
    Introduction: Chymosin (Rennin EC 3.4.23.4) is an aspartyl proteinas (the major proteolyticenzyme in the fourth stomach of the unweaned calf) that is formed by proteolytic activation fromzymogene prochymosin. The aim of his study was to produce the full length and splicing form ofchymosin using pETexpression system in E-coli and to assay the activity of expressed enzyme andpreplasmic secretion.Materials and Methods: The sense primer F-prochy(+) (5´-ggggccatgGCTGAGATCACCAGGA)including NCOI restriction site). The anti sense R-prochy(-) (5´-gggcggccgcGATGGCTTTGGCCAGC -3´) hybridizing to the C-terminal end of calf preprocymosincDNA and contains an additional NotI restriction site at its 5´-end . The cells were disrupted bysonication and proteins were purified by using Ni-NTA beads from Qiagen under native conditional.The preprochymosin and AS6 preprochymosin were activated at pH 4.7. The enzyme solutions werediluted 20-fold with 50 mM phosphate buffer .Results: Sequencing data analysis showed that the exon six has been spliced out and, therefore thegene product is 114 bp shorter in length, both chymosin forms were expressed together in E.coli.Under the same expression conditions, at least AS6 preprochymosin was produced 7-fold highexpression in comparison to a full-length recombinant chymosin. Following acid activation andneutralization, the purified fractions were tested in a qualitative milk clotting assay. The clottingactivity of preprochymosin and exon6-less preprochymosin were comparable.Conclusion: High expression of this alternatively expressed transcript in bacteria, and properfolding of the AS6 chymosin protein molecule in the absence of exon six are the two most importantaspects distinguished in this research

    Serum lipoprotein allotypes in inbred strains of rabbits.

    No full text
    Serum lipoprotein allotypes were examined for 10 males and 10 female rabbits from each of 16 genetically defined strains. The results suggested that the four allotypes, Lpq 1, Lpq2, Lpq3, and Lpq4, were controlled by three closely linked genes, IpqA, IpqB, and IpqC. Gene IpqA, controlling the expression of the Lpq1 and Lpq2 allotypes, and gene IpqB controlling the expression of the Lpq3 allotype, show limited polymorphisms

    Neuroanatomy of transgender persons in a Non‐Western population and improving reliability in clinical neuroimaging

    No full text
    Although the neuroanatomy of transgender persons is slowly being charted, findings are presently discrepant. Moreover, the major body of work has focused on Western populations. One important factor is the issue of power and low signal-to-noise (SNR) ratio in neuroimaging studies of rare study populations including endocrine or neurological patient groups. The present study focused on the structural neuroanatomy of a Non-Western (Iranian) sample of 40 transgender men (TM), 40 transgender women (TW), 30 cisgender men (CM), and 30 cisgender women (CW), while assessing whether the reliability of findings across structural anatomical measures including gray matter volume (GMV), cortical surface area (CSA), and cortical thickness (CTh) could be increased by using two back-to-back within-session structural MRI scans. Overall, findings in transgender persons were more consistent with sex assigned at birth in GMV and CSA, while no group differences emerged for CTh. Repeated measures analysis also indicated that having a second scan increased SNR in all regions of interest, most notably bilateral frontal poles, pre- and postcentral gyri and putamina. The results suggest that a simple time and cost-effective measure to improve SNR in rare clinical populations with low prevalence rates is a second anatomical scan when structural MRI is of interest
    corecore