134 research outputs found

    Protein-Coated Magnetic Nanoparticles: Creation and Investigation

    Get PDF
    A novel universal approach to cross-linking of protein macromolecules on the surface of magnetite na-noparticles has been developed. The approach is based on protein liability to free radical modification, leading to the formation of intermolecular covalent cross links. Free radicals are locally generated on the surface of nanoparticles. Using a set of physicochemical methods, it has been proven that stable coatings composed of protein macromolecules are formed around individual nanoparticles. The proteins fixed on nanoparticles do not lose their activity as a result of adsorption and free radical modification. Fluorescent probe approach for evaluation of the native functional properties of serum albumin as a part of coating is suggested. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3537

    Signs of organization aging as an actual issue of modern management

    Get PDF
    The article is devoted to the actual issue of modern management - the aging process of an organization. Managers are involved greatly in this process. Their responsibility is to determine the beginning of this process at an early stage and take measures to avoid company aging, that requires certain knowledge and skills

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    On the history of the discovery of bacteriophages

    No full text
    The article is devoted to an analysis of the significance of bacteriophages’ discovery in the subsequent development of medicine: from the prevention and control of infectious bacterial diseases to the study of global evolutionary mechanisms by genetic engineering methods. French researcher Felix d’HΓ©relle discovered bacteriophages when he found a β€œsubstance” that kills dysentery bacteria in 1917. A virus by nature, it was called a β€œbacteria devourer” (bacteriophage). Long before the discovery of antibiotics, d’HΓ©relle found that bacteriophages were a universal specific antibacterial agent that was safe for humans. In Russia, interest in the study of bacteriophages arose in the early 1920s. In 1939, the renowned Soviet microbiologist Z.V. Ermolieva created a cholera bacteriophage preparation. During World War II in besieged Stalingrad, she produced the cholera bacteriophage in huge volumes and prevented an epidemic of cholera in the Red Army – an important factor in the victory in the Battle of Stalingrad. New molecular biology and genetics technologies have made it possible to reveal the underlying interaction processes of a bacteriophage with a bacterial cell: lysogeny (inclusion of a moderate bacteriophage into the genome of a bacterial cell) and the phenomenon of lysogenic conversion (Eugene and Elizabeth Wollman, 1936), genetic recombination – the mutual exchange of genes between two different lines of bacteriophages (M. Delbruck, S. Luria, A. Hershey, 1946, 1952), integrated with the cell’s DNA, the asymptomatic presence of the virus (pro-bacteriophage), and its activation by the inductive effect of ultraviolet radiation, radiation and a number of chemical factors (A. Lwoff, 1965). Nowadays, the study of molecular genetic mechanisms of embedding, regulation, repression, and induction of bacteriophage activity within a bacterium is important for understanding the mechanisms of heredity, tissue growth and development mechanisms of some forms of tumors. Β© Andrey V. Ermolaev, Tatiana S. Sorokina

    On the history of the discovery of bacteriophages

    No full text
    The article is devoted to an analysis of the significance of bacteriophages’ discovery in the subsequent development of medicine: from the prevention and control of infectious bacterial diseases to the study of global evolutionary mechanisms by genetic engineering methods. French researcher Felix d’HΓ©relle discovered bacteriophages when he found a β€œsubstance” that kills dysentery bacteria in 1917. A virus by nature, it was called a β€œbacteria devourer” (bacteriophage). Long before the discovery of antibiotics, d’HΓ©relle found that bacteriophages were a universal specific antibacterial agent that was safe for humans. In Russia, interest in the study of bacteriophages arose in the early 1920s. In 1939, the renowned Soviet microbiologist Z.V. Ermolieva created a cholera bacteriophage preparation. During World War II in besieged Stalingrad, she produced the cholera bacteriophage in huge volumes and prevented an epidemic of cholera in the Red Army – an important factor in the victory in the Battle of Stalingrad. New molecular biology and genetics technologies have made it possible to reveal the underlying interaction processes of a bacteriophage with a bacterial cell: lysogeny (inclusion of a moderate bacteriophage into the genome of a bacterial cell) and the phenomenon of lysogenic conversion (Eugene and Elizabeth Wollman, 1936), genetic recombination – the mutual exchange of genes between two different lines of bacteriophages (M. Delbruck, S. Luria, A. Hershey, 1946, 1952), integrated with the cell’s DNA, the asymptomatic presence of the virus (pro-bacteriophage), and its activation by the inductive effect of ultraviolet radiation, radiation and a number of chemical factors (A. Lwoff, 1965). Nowadays, the study of molecular genetic mechanisms of embedding, regulation, repression, and induction of bacteriophage activity within a bacterium is important for understanding the mechanisms of heredity, tissue growth and development mechanisms of some forms of tumors. Β© Andrey V. Ermolaev, Tatiana S. Sorokina

    Ассоциации оТирСния с ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ Π²ΠΈΡ‚Π°ΠΌΠΈΠ½ΠΎΠΌ D Π² зависимости ΠΎΡ‚ ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΠΎΠ² rs2228570 Π³Π΅Π½Π° VDR ΠΈ rs9939609 Π³Π΅Π½Π° FTO Ρƒ ΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ срСднСй полосы ΠΈ ΠšΡ€Π°ΠΉΠ½Π΅Π³ΠΎ Π‘Π΅Π²Π΅Ρ€Π° России

    No full text
    Background: It has been shown that vitaminΒ  D availability depends on the body mass index (BMI). Genetic polymorphisms contribute to the development of vitaminΒ  D deficiency.Aim: To study the availability of vitamin D in the population of various regions of the Russian Federation, depending on the BMI values and the rs2228570 polymorphisms of the VDR gene and rs9939609 of the FTO gene.Materials and methods: The rs2228570 polymorphisms of the VDR gene and rs9939609 of the FTO gene were identified in 311 subjects (136, from the midland of Russia, and 175 from the Far North). Serum 25-hydroxyvitaminΒ  D [25(OH)D] levels were measured by an immunoenzyme assay in the autumn and winter seasons. Genotyping was performed with the allele-specific amplification and real-time detection of results using TaqMan probes complementary to the polymorphic DNA segments and the CFX96 Real Time System amplifier (Bio-Rad, USA). We studied associations of the rs9939609 polymorphism of the fat mass and obesity-associated (FTO) gene located at 16q12.2, as well as the rs2228570 polymorphism of the vitamin D receptor gene (VDR) located at 12q13.11.Results: Frank vitamin D deficiency (serum 25 (OH) D level20 ng/ml) was observed in 39.7% (54/136) of the sample from the midland, in 40% (14/35) of the migrants and in 30.7% (43/140) of the indigenous inhabitants of the Far North (Nenets). Obese residents of the midland Russia had significantly lower serum 25(OH)D levels, and the indigenous population of the Far North had significantly higher levels than those with BMI30 (Ρ€0.05). In the indigenous population of the Northern Region, there was aΒ  significant association between vitaminΒ  D deficiency and CΒ allele of the rs2228570 polymorphism of the VDR gene (odds ratio [OR] 2.5, 95% confidence interval [CI] 1.46–4.27, p=0.0006) and the AA genotype of the rs9939609 polymorphism of the FTO gene (OR 8.83, 95% CI 0.94–82.5, p=0.02).Conclusion: The association between obesity and vitaminΒ  D availability in the individuals with the rs2228570 polymorphism of the VDR gene and the rs9939609 polymorphism of the FTO gene depends on their ethnicity.Β ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Показано, Ρ‡Ρ‚ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π²ΠΈΡ‚Π°ΠΌΠΈΠ½ΠΎΠΌΒ  D зависит ΠΎΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ индСкса массы Ρ‚Π΅Π»Π° (ИМВ). Π’ΠΊΠ»Π°Π΄ Π²Β  Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π° Π²ΠΈΡ‚Π°ΠΌΠΈΠ½Π° D вносят гСнСтичСскиС ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΡ‹.ЦСль – ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π²ΠΈΡ‚Π°ΠΌΠΈΠ½ΠΎΠΌ D насСлСния Ρ€Π°Π·Π½Ρ‹Ρ… Ρ€Π΅Π³ΠΈΠΎΠ½ΠΎΠ² Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ Π²Β  зависимости ΠΎΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ИМВ ΠΈΒ  ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΠΎΠ² rs2228570 Π³Π΅Π½Π° VDR ΠΈΒ  rs9939609 Π³Π΅Π½Π° FTO.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈΒ  ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΠΎΠ² rs2228570 Π³Π΅Π½Π° VDR ΠΈΒ  rs9939609 Π³Π΅Π½Π° FTO ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΡƒΒ  311 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ (136 ΠΏΡ€ΠΎΠΆΠΈΠ²Π°Π»ΠΈ Π²Β  срСднСй полосС России, 175Β  – Π½Π° ΠšΡ€Π°ΠΉΠ½Π΅ΠΌ Π‘Π΅Π²Π΅Ρ€Π΅). ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ Π²Β  сывороткС ΠΊΡ€ΠΎΠ²ΠΈ 25-гидроксивитамина  D (25(ОН)D) опрСдСляли ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ в осСннС-Π·ΠΈΠΌΠ½ΠΈΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄. Π“Π΅Π½ΠΎΡ‚ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ с  ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ аллСль-спСцифичной Π°ΠΌΠΏΠ»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ с  Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠ΅ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π²Β Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ с использованиСм TaqMan-Π·ΠΎΠ½Π΄ΠΎΠ², ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„Π½Ρ‹ΠΌ участкам Π”ΠΠš, ΠΈΒ  Π°ΠΌΠΏΠ»ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π° CFX96 Real Time System (β€œBio-Rad”, БША). Π˜Π·ΡƒΡ‡Π°Π»ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΡ‹ rs9939609 Π³Π΅Π½Π° связи с Тировой массой ΠΈΒ ΠΎΠΆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ (FTO), мСстополоТСниС 16q12.2, Π°Β  Ρ‚Π°ΠΊΠΆΠ΅ rs2228570 Π³Π΅Π½Π° Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° Π²ΠΈΡ‚Π°ΠΌΠΈΠ½Π° D (VDR), мСстополоТСниС 12q13.11.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΉ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚ Π²ΠΈΡ‚Π°ΠΌΠΈΠ½Π°Β D (ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ 25(ОН)D в сывороткС ΠΊΡ€ΠΎΠ²ΠΈ 20 Π½Π³/ΠΌΠ») отмСчался ΡƒΒ 39,7% (54/136) насСлСния срСднСй полосы России, ΡƒΒ 40% (14/35) ΠΏΡ€ΠΈΡˆΠ»Ρ‹Ρ… ΠΈΒ ΡƒΒ 30,7% (43/140) ΠΊΠΎΡ€Π΅Π½Π½Ρ‹Ρ… ΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ ΠšΡ€Π°ΠΉΠ½Π΅Π³ΠΎ Π‘Π΅Π²Π΅Ρ€Π° (Π½Π΅Π½Ρ†Ρ‹). ΠŸΡ€ΠΈ ΠΎΠΆΠΈΡ€Π΅Π½ΠΈΠΈ ΡƒΒ ΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ срСднСй полосы России ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ 25(ОН)D в сывороткС ΠΊΡ€ΠΎΠ²ΠΈ Π±Ρ‹Π» Π½ΠΈΠΆΠ΅, Π°Β  ΡƒΒ  ΠΊΠΎΡ€Π΅Π½Π½ΠΎΠ³ΠΎ насСлСния ΠšΡ€Π°ΠΉΠ½Π΅Π³ΠΎ Π‘Π΅Π²Π΅Ρ€Π°Β  – Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ ΠΏΡ€ΠΈ ИМВ30 (Ρ€0,05). Π£Β ΠΊΠΎΡ€Π΅Π½Π½ΠΎΠ³ΠΎ насСлСния сСвСрного Ρ€Π΅Π³ΠΈΠΎΠ½Π° выявлСна статистичСски значимая связь аллСля Π‘Β ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΠ° rs2228570 Π³Π΅Π½Π° VDR (ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ шансов (ОШ) 2,5, 95% Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» (Π”Π˜) [1,46–4,27], p=0,0006) ΠΈΒ  Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΠ° АА ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΠ° rs9939609 Π³Π΅Π½Π° FTO (ОШ 8,83, 95% Π”Π˜ [0,94–82,5], p=0,02) с  Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚ΠΎΠΌ Π²ΠΈΡ‚Π°ΠΌΠΈΠ½Π° D.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Ассоциация ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΠΆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ ΠΈΒ  ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ Π²ΠΈΡ‚Π°ΠΌΠΈΠ½ΠΎΠΌΒ  D ΡƒΒ Π»ΡŽΠ΄Π΅ΠΉ с полиморфизмами rs2228570 Π³Π΅Π½Π° VDR ΠΈΒ rs9939609 Π³Π΅Π½Π° FTO зависит ΠΎΡ‚ ΠΈΡ… этничСской принадлСТности.

    Reaction of 1,2,3,4-tetrahydro-2,4,5-trimethylpyrrolo[1,2-c]pyrimidine and its 7-formyl-substituted derivative with nitric acid

    No full text
    1,2,3,4-Tetrahydro-2,4,5-triniethylpyrrolo[1,2-c]pyrimidine and its 7-formyl derivative when treated with nitric acid are converted to substituted tetrahydropyrrolo-[1,2-c]pyrimidine-7-carboxylic acid. Conversion occurs through opening of the aminal moiety and formylation of the second molecule of tetrahydropyrrolo[1,2-c]pyrimidine by formaldehyde formed to the 7-formyl-substituted derivative. Β©1999 KluwerAcademic/Plenum

    Interaction of 1,2,3,4-tetrahydro-2,4,5-trimethylpyrrolo[1,2-c]pyrimidine and its 7-formyl derivative with nitrous acid

    No full text
    • …
    corecore