79 research outputs found
Two-Site Quantum Random Walk
We study the measure theory of a two-site quantum random walk. The truncated
decoherence functional defines a quantum measure on the space of
-paths, and the in turn induce a quantum measure on the
cylinder sets within the space of untruncated paths. Although
cannot be extended to a continuous quantum measure on the full -algebra
generated by the cylinder sets, an important question is whether it can be
extended to sufficiently many physically relevant subsets of in a
systematic way. We begin an investigation of this problem by showing that
can be extended to a quantum measure on a "quadratic algebra" of subsets of
that properly contains the cylinder sets. We also present a new
characterization of the quantum integral on the -path space.Comment: 28 page
On the "renormalization" transformations induced by cycles of expansion and contraction in causal set cosmology
We study the ``renormalization group action'' induced by cycles of cosmic
expansion and contraction, within the context of a family of stochastic
dynamical laws for causal sets derived earlier. We find a line of fixed points
corresponding to the dynamics of transitive percolation, and we prove that
there exist no other fixed points and no cycles of length two or more. We also
identify an extensive ``basin of attraction'' of the fixed points but find that
it does not exhaust the full parameter space. Nevertheless, we conjecture that
every trajectory is drawn toward the fixed point set in a suitably weakened
sense.Comment: 22 pages, 1 firgure, submitted to Phys. Rev.
Perfect mirrors and the self-accelerating box paradox
We consider the question raised by Unruh and Wald of whether mirrored boxes
can self-accelerate in flat spacetime (the ``self-accelerating box paradox'').
From the point of view of the box, which perceives the acceleration as an
impressed gravitational field, this is equivalent to asking whether the box can
be supported by the buoyant force arising from its immersion in a perceived
bath of thermal (Unruh) radiation. The perfect mirrors we study are of the type
that rely on light internal degrees of freedom which adjust to and reflect
impinging radiation. We suggest that a minimum of one internal mirror degree of
freedom is required for each bulk field degree of freedom reflected. A short
calculation then shows that such mirrors necessarily absorb enough heat from
the thermal bath that their increased mass prevents them from floating on the
thermal radiation. For this type of mirror the paradox is therefore resolved.
We also observe that this failure of boxes to ``float'' invalidates one of the
assumptions going into the Unruh-Wald analysis of entropy balances involving
boxes lowered adiabatically toward black holes. Nevertheless, their broad
argument can be maintained until the box reaches a new regime in which
box-antibox pairs dominate over massless fields as contributions to thermal
radiation.Comment: 11 pages, Revtex4, changes made in response to referee and to enhance
clarity, discussion of massive fields correcte
A domain of spacetime intervals in general relativity
Beginning from only a countable dense set of events and the causality
relation, it is possible to reconstruct a globally hyperbolic spacetime in a
purely order theoretic manner. The ultimate reason for this is that globally
hyperbolic spacetimes belong to a category that is equivalent to a special
category of domains called interval domains.Comment: 25 page
Distinguishing Initial State-Vectors from Each Other in Histories Formulations and the PBR Argument
Following the argument of Pusey, Barrett and Rudolph (Nature Phys. 8:476,
2012), new interest has been raised on whether one can interpret state-vectors
(pure states) in a statistical way (-epistemic theories), or if each of
them corresponds to a different ontological entity. Each interpretation of
quantum theory assumes different ontology and one could ask if the PBR argument
carries over. Here we examine this question for histories formulations in
general with particular attention to the co-event formulation. State-vectors
appear as the initial state that enters into the quantum measure. While the PBR
argument goes through up to a point, the failure to meet some of the
assumptions they made does not allow one to reach their conclusion. However,
the author believes that the "statistical interpretation" is still impossible
for co-events even if this is not proven by the PBR argument.Comment: 25 pages, v2 published versio
Quantum Geons and Noncommutative Spacetimes
Physical considerations strongly indicate that spacetime at Planck scales is
noncommutative. A popular model for such a spacetime is the Moyal plane. The
Poincar\`e group algebra acts on it with a Drinfel'd-twisted coproduct. But the
latter is not appropriate for more complicated spacetimes such as those
containing the Friedman-Sorkin (topological) geons. They have rich
diffeomorphism groups and in particular mapping class groups, so that the
statistics groups for N identical geons is strikingly different from the
permutation group . We generalise the Drinfel'd twist to (essentially)
generic groups including to finite and discrete ones and use it to modify the
commutative spacetime algebras of geons as well to noncommutative algebras. The
latter support twisted actions of diffeos of geon spacetimes and associated
twisted statistics. The notion of covariant fields for geons is formulated and
their twisted versions are constructed from their untwisted versions.
Non-associative spacetime algebras arise naturally in our analysis. Physical
consequences, such as the violation of Pauli principle, seem to be the outcomes
of such nonassociativity.
The richness of the statistics groups of identical geons comes from the
nontrivial fundamental groups of their spatial slices. As discussed long ago,
extended objects like rings and D-branes also have similar rich fundamental
groups. This work is recalled and its relevance to the present quantum geon
context is pointed out.Comment: 41 page
On the Status of Highly Entropic Objects
It has been proposed that the entropy of any object must satisfy fundamental
(holographic or Bekenstein) bounds set by the object's size and perhaps its
energy. However, most discussions of these bounds have ignored the possibility
that objects violating the putative bounds could themselves become important
components of Hawking radiation. We show that this possibility cannot a priori
be neglected in existing derivations of the bounds. Thus this effect could
potentially invalidate these derivations; but it might also lead to
observational evidence for the bounds themselves.Comment: 6 pages, RevTex, a few editorial change
Ten Proofs of the Generalized Second Law
Ten attempts to prove the Generalized Second Law of Thermodyanmics (GSL) are
described and critiqued. Each proof provides valuable insights which should be
useful for constructing future, more complete proofs. Rather than merely
summarizing previous research, this review offers new perspectives, and
strategies for overcoming limitations of the existing proofs. A long
introductory section addresses some choices that must be made in any
formulation the GSL: Should one use the Gibbs or the Boltzmann entropy? Should
one use the global or the apparent horizon? Is it necessary to assume any
entropy bounds? If the area has quantum fluctuations, should the GSL apply to
the average area? The definition and implications of the classical,
hydrodynamic, semiclassical and full quantum gravity regimes are also
discussed. A lack of agreement regarding how to define the "quasi-stationary"
regime is addressed by distinguishing it from the "quasi-steady" regime.Comment: 60 pages, 2 figures, 1 table. v2: corrected typos and added a
footnote to match the published versio
Three-slit experiments and quantum nonlocality
An interesting link between two very different physical aspects of quantum
mechanics is revealed; these are the absence of third-order interference and
Tsirelson's bound for the nonlocal correlations. Considering multiple-slit
experiments - not only the traditional configuration with two slits, but also
configurations with three and more slits - Sorkin detected that third-order
(and higher-order) interference is not possible in quantum mechanics. The EPR
experiments show that quantum mechanics involves nonlocal correlations which
are demonstrated in a violation of the Bell or CHSH inequality, but are still
limited by a bound discovered by Tsirelson. It now turns out that Tsirelson's
bound holds in a broad class of probabilistic theories provided that they rule
out third-order interference. A major characteristic of this class is the
existence of a reasonable calculus of conditional probability or, phrased more
physically, of a reasonable model for the quantum measurement process.Comment: 9 pages, no figur
Quantum field theory on a growing lattice
We construct the classical and canonically quantized theories of a massless
scalar field on a background lattice in which the number of points--and hence
the number of modes--may grow in time. To obtain a well-defined theory certain
restrictions must be imposed on the lattice. Growth-induced particle creation
is studied in a two-dimensional example. The results suggest that local mode
birth of this sort injects too much energy into the vacuum to be a viable model
of cosmological mode birth.Comment: 28 pages, 2 figures; v.2: added comments on defining energy, and
reference
- …