10 research outputs found

    The effect of a commercially available bacteriophage and bacteriocin on Listeria monocytogenes in coleslaw

    Get PDF
    Changing consumer attitudes show an increased interest in non-chemical antimicrobials in food preservation and safety. This greater interest of consumers in more ‘natural’ or ‘clean-label’ food interventions is complicated by concurrent demands for minimally processed, ready-to-eat (RTE) foods with long shelf lives. Two viable interventions are bacteriophage (phage) and bacteriocins, a number of which have already been approved for use in food safety. Listeriosis is a serious foodborne infection which affects at-risk members of the population. Listeriosis incidence has increased between 2008 and 2015 and has a case fatality rate of up to 20% with antibiotic intervention. Here, we tested an intervention to attempt to control a pathogenic Listeria monocytogenes strain in a food model using two of these alternative antimicrobials. Phage P100 on its own had a significant effect on L. monocytogenes ScottA numbers in coleslaw over a 10-day period at 4 °C (p ≤ 0.001). A combination of P100 and Nisaplin® (a commercial formulation of the lantibiotic bacteriocin, nisin) had a significant effect on the pathogen (p ≤ 0.001). P100 and Nisaplin® in combination were more effective than Nisaplin® alone, but not P100 alone

    Phage therapy targeting Escherichia coli - a story with no end?

    Get PDF
    Bacteriophages (phages) or bacterial viruses have long been proposed as an alternative therapy against antibiotic-resistant bacteria such as Escherichia coli. Even though poorly documented in the scientific literature, a long clinical history of phage therapy in countries such as Russia and Georgia suggests potential value in the use of phages as antibacterial agents. Escherichia coli is responsible for a wide range of diseases, intestinal (diarrhoea) and extraintestinal (UTI, septicaemia, pneumoniae, meningitis), making it an ideal target for phage therapy. This review discusses the latest research focusing on the potential of phage therapy to tackle E. coli-related illnesses. No intact phages are approved in EU or USA for human therapeutic use, but many successful in vitro and in vivo studies have been reported. However, additional research focused on in vivo multispecies models and human trials are required if phage therapy targeting E. coli pathotypes can be a story with happy end

    Characterizing Phage-Host Interactions in a Simplified Human Intestinal Barrier Model

    No full text
    An intestinal epithelium model able to produce mucus was developed to provide an environment suitable for testing the therapeutic activity of gut bacteriophages. We show that Enterococcus faecalis adheres more effectively in the presence of mucus, can invade the intestinal epithelia and is able to translocate after damaging tight junctions. Furthermore, Enterococcus phage vB_EfaM_A2 (a member of Herelleviridae that possesses virion associated immunoglobin domains) was found to translocate through the epithelium in the presence and absence of its host bacteria. Phage A2 protected eukaryotic cells by reducing mortality and maintaining the structure of the cell layer structure. We suggest the mammalian cell model utilized within this study as an adaptable in vitro model that can be employed to enable a better understanding of phage–bacteria interactions and the protective impact of phage therapy relating to the intestinal epithelium

    CFD Analysis for a New Trombe Wall Concept

    No full text
    The envelope (façade) of a building is the first barrier between the exterior and the interior of the building and withstands the highest variation in temperature and solar radiation. Trombe walls are used to take advantage of that and contribute to the heating of interior air, helping the heating system. In this study, a new Trombe wall design is presented to contribute significantly to the indoor ventilation of residential buildings. For this, an exterior wall equipped with a proposed Trombe system was studied in a numerical simulation analysis. The proposed systems consist of two important sections, an exterior one and an interior one. The air cavities on the exterior of the wall, covered with silica glass, are the first heat-transfer layer. The secondary layer used for heat transfer, on the interior, is comprised of a MPCLB wall of 115 mm. The air circulation from the exterior to the interior was established as forced convection with a ventilator. The air circulates through the first heating layer on the exterior air cavities and then passes through the second heating layer on the interior MPCLBs. Two cities in Romania were considered to represent the coldest and hottest climates in Romania. Brașov represents the cold climate and Constanța represents the hot climate. In the investigation, both the presence and absence of solar radiation were taken into account. In total, four cases were established. For all four cases, monthly research was made using monthly mean temperatures, and direct and diffuse solar radiation. The results are promising and illustrate that the system works best during the transitional seasons of spring and autumn. The lower the outdoor temperature, the higher the temperature can be increased. Overall, solar radiation accounted for an average 2 °C increase. The temperature increase varied between 3.4 °C and 15.99 °C for Brașov and between 6.42 °C and 12.07 °C in Constanța. This study presents an alternative way to use the Trombe wall for indoor ventilation purposes throughout the year, compared to traditional uses for the Trombe wall for indoor heating

    Numerical Investigation on Auxiliary Heat Sources for Horizontal Ground Heat Exchangers

    No full text
    Human interference with the Earth’s climate cannot be ignored any longer. Renewable energy sources need utmost attention in all energy sectors. For buildings, geothermal energy for heating, cooling, and domestic hot water is a sustainable solution. Horizontal ground heat exchangers (HGHE) demonstrate promising results with low installation costs. Research is focused on increasing their thermal performances by structural improvements and ground thermal proprieties improvements, with little research on using auxiliary heat to increase their performances. A numerical model for an HGHE was established to investigate the effects of auxiliary heat sources on the performances of the HGHE. The results demonstrate that heat transfer into the HGHE increases the overall ground temperature at the end of the heating season by 138.50% compared with no heat transfer from auxiliary heat sources. The ground freezing period decreased by approximately 24.74% by having a heated basement, approximately 40.20% by transferring heat with solar thermal panels, and approximately 62.88% by using both auxiliary heat sources. The difference between the undisturbed ground temperature and the ground temperature with no auxiliary heat sources at the end of the season was 3.45 °C. The difference between the undisturbed ground temperature and the ground temperature with all auxiliary heat sources resulted in 0.92 °C

    Nanostructured Coatings Based on Graphene Oxide for the Management of Periprosthetic Infections

    No full text
    To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated periprosthetic infections. Using a modified Hummers protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings. The stoichiometric and uniform transfer was revealed by infrared microscopy (IRM) and scanning electron microscopy (SEM) studies. In vitro evaluation, performed on fresh blood samples, has shown the excellent hemocompatibility of PLA-nGO-Zin-coated samples (with a hemolytic index of 1.15%), together with their anti-inflammatory ability. Moreover, the PLA-nGO-Zin coatings significantly inhibited the development of mature bacterial biofilms, inducing important anti-biofilm efficiency in the as-coated samples. The herein-reported results evidence the promising potential of PLA-nGO-Zin coatings to be used for the biocompatible and antimicrobial surface modification of metallic implants
    corecore