414 research outputs found

    A new combined protocol to treat the dentin hypersensitivity associated with non-carious cervical lesions: A randomized controlled trial

    Get PDF
    The goal of this research is to assess the desensitizing effect of a diode laser on noncarious cervical lesions (NCCLs) responsible for dentin hypersensitivity (DH) in two separate output forces implemented both independently and in sequential combination modalities. A randomized controlled trial for this study was applied. Sixty-nine NCCLs responsible for DH pain with severity between 6 and 9 on the VAS scale were considered. Three study groups were developed using just one lesion from three different quadrants of the oral cavity of each patient. All treatment procedures were conducted using a laser diode (810 nm, 5 W) with varying power outputs used separately or in combination. The pain by DH was evaluated at baseline, at treatment completion, and at 15 days and 3 months after each laser procedure. Data analysis was performed using a Wilcoxon test for paired samples, a one-way ANOVA test, and an unpaired t-test. The significant reduction of the mean VAS score was estimated in each study group immediately and at 15 days and 3 months after the end of treatment and compared with the baseline mean VAS score (p-value < 0.0001). The best result concerning the improvement of DH symptomatology was assessed when a combined protocol of two different output powers of the diode laser was used. The authors conclude that the diode laser (810 nm) therapy procedure combining two separate output forces (low and high power) can improve the painful symptoms of DH from NCCLs

    Regenerative potential of DPSCs and revascularization. direct, paracrine or autocrine effect?

    Get PDF
    A new source of mesenchymal stem cells has recently been discovered, the so-called dental pulp derived stem cells (DPSCs) which therefore could represent potentially tools for regenerative medicine. DPSC originate from the neural crest and are physiologically involved in dentin homeostasis; moreover, they contribute to bone remodeling and differentiation into several tissues including cartilage, bone, adipose and nervous tissues. DPSCs have also been shown to influence the angiogenesis process, for example through the release of secretory factors or by differentiating into vascular and/or perivascular cells. Angiogenesis, that has a pivotal role in tissue regeneration and repair, is defined as the formation of new vessels from preexisting vessels and is mediated by mutual and reciprocal interactions between endothelial cells and perivascular cells. It is also known that co-cultures of perivascular and endothelial cells (ECs) can form a vascular network in vitro and also in vivo. Since DPSCs seem to have characteristics similar to pericytes, understanding the possible mechanism of interaction between DPSCs and ECs during neo-angiogenesis is dramatically important for the development of advanced clinical application in the field of regeneration. Graphical abstract: [Figure not available: see fulltext.

    Tumour necrosis factor-α mediates blood—brain barrier damage in HIV-1 infection of the central nervous system

    Get PDF
    The pathogenesis of brain inflammation and damage by human immunodeficiency virus (HIV) infection is unclear. Because blood–brain barrier damage and impaired cerebral perfusion are common features of HIV-1 infection, we evaluated the role of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in mediating disruption of the blood–brain barrier. Levels of TNF-α were more elevated in cerebrospinal fluid (CSF) than in serum of HIV-1 infected patients and were mainly detected in those patients who had neurologic involvement. Intrathecal TNF-α levels correlated with signs of blood–brain barrier damage, manifested by high CSF to serum albumin quotient, and with the degree of barrier impairment. In contrast, intrathecal IL-1β levels did not correlate with blood-brain barrier damage in HIV-1 infected patients. TNF-α seems to be related to active neural inflammation and to blood–brain barrier damage. The proinflammatory effects of TNF-α in the nervous system are dissociated from those of IL-1β

    Sotagliflozin, the first dual SGLT inhibitor. Current outlook and perspectives

    Get PDF
    Sotagliflozin is a dual sodium-glucose co-transporter-2 and 1 (SGLT2/1) inhibitor for the treatment of both type 1 (T1D) and type 2 diabetes (T2D). Sotagliflozin inhibits renal sodium-glucose co-transporter 2 (determining significant excretion of glucose in the urine, in the same way as other, already available SGLT-2 selective inhibitors) and intestinal SGLT-1, delaying glucose absorption and therefore reducing post prandial glucose. Well-designed clinical trials, have shown that sotagliflozin (as monotherapy or add-on therapy to other anti-hyperglycemic agents) improves glycated hemoglobin in adults with T2D, with beneficial effects on bodyweight and blood pressure. Similar results have been obtained in adults with T1D treated with either continuous subcutaneous insulin infusion or multiple daily insulin injections, even after insulin optimization. A still ongoing phase 3 study is currently evaluating the effect of sotagliflozin on cardiovascular outcomes (ClinicalTrials.gov NCT03315143). In this review we illustrate the advantages and disadvantages of dual SGLT 2/1 inhibition, in order to better characterize and investigate its mechanisms of action and potentialities

    Cardiovascular and Renal Effectiveness of GLP-1 Receptor Agonists vs. Other Glucose-Lowering Drugs in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Real-World Studies

    Get PDF
    Cardiovascular outcome trials (CVOT) showed that treatment with glucagon-like peptide-1 receptor agonists (GLP-1RA) is associated with significant cardiovascular benefits. However, CVOT are scarcely representative of everyday clinical practice, and real-world studies could provide clini-cians with more relatable evidence. Here, literature was thoroughly searched to retrieve real-world studies investigating the cardiovascular and renal outcomes of GLP-1RA vs. other glucose-lowering drugs and carry out relevant meta-analyses thereof. Most real-world studies were conducted in populations at low cardiovascular and renal risk. Of note, real-world studies investigating cardio-renal outcomes of GLP-1RA suggested that initiation of GLP-1RA was associated with a greater benefit on composite cardiovascular outcomes, MACE (major adverse cardiovascular events), all-cause mortality, myocardial infarction, stroke, cardiovascular death, peripheral artery disease, and heart failure compared to other glucose-lowering drugs with the exception of sodium-glucose transporter-2 inhibitors (SGLT-2i). Initiation of SGLT-2i and GLP-1RA yielded similar effects on composite cardiovascular outcomes, MACE, stroke, and myocardial infarction. Conversely, GLP-1RA were less effective on heart failure prevention compared to SGLT-2i. Finally, the few real-world studies addressing renal outcomes suggested a significant benefit of GLP-1RA on estimated glomerular filtration rate (eGFR) reduction and hard renal outcomes vs. active comparators except SGLT-2i. Further real-world evidence is needed to clarify the role of GLP-1RA in cardio-renal protection among available glucose-lowering drugs

    Free circulating ICAM-1 in serum and cerebrospinal fluid of HIV-1 infected patients correlate with TNF-α and blood-brain barrier damage

    Get PDF
    The mechanism for the initiation of blood-brain barrier damage and intrathecal inflammation in patients infected with the human immunodeficiency virus (HIV) is poorly understood. We have recently reported that tumour necrosis factor-α (TNF-α) mediates active neural inflammation and blood-brain barrier damage in HIV-1 infection. Stimulation of endothelial cells by TNF-α induces the expression of intercellular adhesion molecule-1 (ICAM-1), which is an important early marker of immune activation and response. We report herein for the first time the detection of high levels of free circulating ICAM-1 in serum and cerebrospinal fluid of patients with HIV-1 infection. Free circulating ICAM-1 in these patients correlated with TNF-α concentrations and with the degree of blood-brain barrier damage and were detected predominantly in patients with neurologic involvement. These findings have important implications for the understanding and investigation of the intrathecal inflammatory response in HIV-1 infection

    Antiphospholipid reactivity against cardiolipin metabolites occurring during endothelial cell apoptosis.

    Get PDF
    We have recently shown that cardiolipin (CL) and its metabolites move from mitochondria to other cellular membranes during death receptor-mediated apoptosis. In this study, we investigate the immunoreactivity to CL derivatives occurring during endothelial apoptosis in patients with antiphospholipid syndrome (APS) and systemic lupus erythematosus (SLE). We compared the serum immunoreactivity to CL with that of its derivatives monolysocardiolipin (MCL), dilysocardiolipin (DCL), and hydrocardiolipin (HCL) by means of both enzyme-linked immunosorbent assay and thin-layer chromatography (TLC) immunostaining. In addition, we investigated the composition of phospholipid extracts from the plasma membrane of apoptotic endothelial cells and the binding of patients' sera to the surface of the same cells by using high-performance TLC and immunofluorescence analysis. The average reactivity to MCL was comparable with that of CL and significantly higher than that for DCL and HCL in patients studied, both in the presence or in the absence of beta2-glycoprotein I. Of relevance for the pathogenic role of these autoantibodies, immunoglobulin G from patients' sera showed an increased focal reactivity with the plasma membrane of endothelial cells undergoing apoptosis. Interestingly, the phospholipid analysis of these light membrane fractions showed an accumulation of both CL and MCL. Our results demonstrated that a critical number of acyl chains in CL derivatives is important for the binding of antiphospholipid antibodies and that MCL is an antigenic target with immunoreactivity comparable with CL in APS and SLE. Our finding also suggests a link between apoptotic perturbation of CL metabolism and the production of these antibodies

    Increased Beta Cell Workload Modulates Proinsulin/Insulin Ratio in Humans

    Get PDF
    Increased proinsulin secretion, which characterizes type 2 diabetes and insulin resistance, may be due to an intrinsic, primitive defect in proinsulin processing, or be secondary to increased demand on \u3b2-cells (hyperinsulinemia secondary to insulin resistance). An alternative way to investigate the relation between relative hyperproinsulinemia and increased secretory demand is to study the dynamic changes in proinsulin to insulin ratio after partial pancreatectomy, a model of acute increased beta cell workload on the remaining pancreas. To pursue this aim, non-diabetic patients, scheduled for partial pancreatectomy, underwent 4-hour mixed meal tests and hyperinsulinemic euglycemic clamps before and after surgery. Following acute beta cell mass reduction, no changes were observed in fasting proinsulin to insulin ratio, while fold change in proinsulin to insulin ratio significantly increased over time after the meal. Further, our data demonstrate that whole-body insulin resistance is associated with underlying defects in proinsulin secretion, which become detectable only in the presence of increased insulin secretion demand

    Antiphospholipid antibodies in patients with stroke during COVID-19: A role in the signaling pathway leading to platelet activation

    Get PDF
    Background: Several viral and bacterial infections, including COVID-19, may lead to both thrombotic and hemorrhagic complications. Previously, it has been demonstrated an "in vitro " pathogenic effect of "antiphospholipid " antibodies (aPLs), which are able to activate a proinflammatory and procoagulant phenotype in monocytes, endothelial cells and platelets. This study analyzed the occurrence of aPL IgG in patients with acute ischemic stroke (AIS) during COVID-19, evaluating the effect of Ig fractions from these patients on signaling and functional activation of platelets. Materials and methods: Sera from 10 patients with AIS during COVID-19, 10 non-COVID-19 stroke patients, 20 COVID-19 and 30 healthy donors (HD) were analyzed for anti-cardiolipin, anti-beta 2-GPI, anti-phosphatidylserine/prothrombin and anti-vimentin/CL antibodies by ELISA. Platelets from healthy donors were incubated with Ig fractions from these patients or with polyclonal anti-beta 2-GPI IgG and analyzed for phospho-ERK and phospho-p38 by western blot. Platelet secretion by ATP release dosage was also evaluated. Results: We demonstrated the presence of aPLs IgG in sera of patients with AIS during COVID-19. Treatment with the Ig fractions from these patients or with polyclonal anti-beta 2-GPI IgG induced a significant increase of phospho-ERK and phospho-p38 expression. In the same vein, platelet activation was supported by the increase of adenyl nucleotides release induced by Ig fractions. Conclusions: This study demonstrates the presence of aPLs in a subgroup of COVID-19 patients who presented AIS, suggesting a role in the mechanisms contributing to hypercoagulable state in these patients. Detecting these antibodies as a serological marker to check and monitor COVID-19 may contribute to improve the risk stratification of thromboembolic manifestations in these patients

    Role of GD3-CLIPR-59 Association in Lymphoblastoid T Cell Apoptosis Triggered by CD95/Fas

    Get PDF
    We previously found that a directional movement of the raft component GD3 towards mitochondria, by its association with microtubules, was mandatory to late apoptogenic events triggered by CD95/Fas. Since CLIPR-59, CLIP-170-related protein, has recently been identified as a microtubule binding protein associated with lipid rafts, we analyzed the role of GD3-CLIPR-59 association in lymphoblastoid T cell apoptosis triggered by CD95/Fas. To test whether CLIPR-59 could play a role at the raft-microtubule junction, we performed a series of experiments by using immunoelectron microscopy, static or flow cytometry and biochemical analyses. We first assessed the presence of CLIPR-59 molecule in lymphoblastoid T cells (CEM). Then, we demonstrated that GD3-microtubule interaction occurs via CLIPR-59 and takes place at early time points after CD95/Fas ligation, preceding the association GD3-tubulin. GD3-CLIPR-59 association was demonstrated by fluorescence resonance energy transfer (FRET) analysis. The key role of CLIPR-59 in this dynamic process was clarified by the observation that silencing CLIPR-59 by siRNA affected the kinetics of GD3-tubulin association, spreading of GD3 towards mitochondria and apoptosis execution. We find that CLIPR-59 may act as a typical chaperone, allowing a prompt interaction between tubulin and the raft component GD3 during cell apoptosis triggered by CD95/Fas. On the basis of the suggested role of lipid rafts in conveying pro-apoptotic signals these results disclose new perspectives in the understanding of the mechanisms by which raft-mediated pro-apoptotic signals can directionally reach their target, i.e. the mitochondria, and trigger apoptosis execution
    • …
    corecore