19 research outputs found

    Three-dimensional zonal grids about arbitrary shapes by Poisson's equation

    Get PDF
    A method for generating 3-D finite difference grids about or within arbitrary shapes is presented. The 3-D Poisson equations are solved numerically, with values for the inhomogeneous terms found automatically by the algorithm. Those inhomogeneous terms have the effect near boundaries of reducing cell skewness and imposing arbitrary cell height. The method allows the region of interest to be divided into zones (blocks), allowing the method to be applicable to almost any physical domain. A FORTRAN program called 3DGRAPE has been written to implement the algorithm. Lastly, a method for redistributing grid points along lines normal to boundaries will be described

    GRAPEVINE: Grids about anything by Poisson's equation in a visually interactive networking environment

    Get PDF
    A proven 3-D multiple-block elliptic grid generator, designed to run in 'batch mode' on a supercomputer, is improved by the creation of a modern graphical user interface (GUI) running on a workstation. The two parts are connected in real time by a network. The resultant system offers a significant speedup in the process of preparing and formatting input data and the ability to watch the grid solution converge by replotting the grid at each iteration step. The result is a reduction in user time and CPU time required to generate the grid and an enhanced understanding of the elliptic solution process. This software system, called GRAPEVINE, is described, and certain observations are made concerning the creation of such software

    The 3DGRAPE book: Theory, users' manual, examples

    Get PDF
    A users' manual for a new three-dimensional grid generator called 3DGRAPE is presented. The program, written in FORTRAN, is capable of making zonal (blocked) computational grids in or about almost any shape. Grids are generated by the solution of Poisson's differential equations in three dimensions. The program automatically finds its own values for inhomogeneous terms which give near-orthogonality and controlled grid cell height at boundaries. Grids generated by 3DGRAPE have been applied to both viscous and inviscid aerodynamic problems, and to problems in other fluid-dynamic areas. The smoothness for which elliptic methods are known is seen here, including smoothness across zonal boundaries. An introduction giving the history, motivation, capabilities, and philosophy of 3DGRAPE is presented first. Then follows a chapter on the program itself. The input is then described in detail. A chapter on reading the output and debugging follows. Three examples are then described, including sample input data and plots of output. Last is a chapter on the theoretical development of the method

    3DGRAPE/AL User's Manual

    Get PDF
    This document is a users' manual for a new three-dimensional structured multiple-block volume g generator called 3DGRAPE/AL. It is a significantly improved version of the previously-released a widely-distributed programs 3DGRAPE and 3DMAGGS. It generates volume grids by iteratively solving the Poisson Equations in three-dimensions. The right-hand-side terms are designed so that user-specific; grid cell heights and user-specified grid cell skewness near boundary surfaces result automatically, with little user intervention. The code is written in Fortran-77, and can be installed with or without a simple graphical user interface which allows the user to watch as the grid is generated. An introduction describing the improvements over the antecedent 3DGRAPE code is presented first. Then follows a chapter on the basic grid generator program itself, and comments on installing it. The input is then described in detail. After that is a description of the Graphical User Interface. Five example cases are shown next, with plots of the results. Following that is a chapter on two input filters which allow use of input data generated elsewhere. Last is a treatment of the theory embodied in the code

    A 3DGRAPE/AL: The Ames/Langley technology upgrade

    Get PDF
    This paper describes a new three-dimensional structured multiple-block volume grid generator called 3DGRAPE/AL. It is a significantly improved version of the previously-released and widely-distributed program 3DGRAPE, with many of the improvements taken from the grid-generator program 3DMAGGS. It generates volume grids by iteratively solving the Poisson Equations in three-dimensions. The right-hand-side terms are designed so that user-specified grid cell heights and user-specified grid cell skewness near boundary surfaces result automatically, with little user intervention. Versatility was a high priority in this code's development, and as a result it can generate grids in almost any three-dimensional physical domain. Improvements include added kinds of forcing functions, improved control of cell skewness, improved initial conditions, convergence acceleration, the ability to take as input the output from GRIDGEN, and a simple but powerful graphical user interface (GUI)

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    Numerical Simulation of F-18 Fuselage Forebody Flows at High Angles of Attack

    Get PDF
    As part of the NASA High Alpha Technology Program, fine-grid Navier-Stokes solutions have been obtained for flow over the fuselage forebody and wing leading edge extension of the F/A-18 High Alpha Research Vehicle at large incidence. The resulting flows are complex, and exhibit crossflow separation from the sides of the forebody and from the leading edge extension. A well-defined vortex pattern is observed in the leeward-side flow. Results obtained for laminar flow show good agreement with flow visualizations obtained in ground-based experiments. Further, turbulent flows computed at high-Reynolds-number flight-test conditions (M∞ = 0.2, α = 30 °, and Rec = 11.52 × 106) show good agreement with surface and off-surface visualizations obtained in flight
    corecore