226 research outputs found

    Comparative phylogeography of reef fishes from the Gulf of Aden to the Arabian Sea reveals two cryptic lineages

    Get PDF
    Arabian Sea is a heterogeneous region with high coral cover and warm stable conditions at the western end (Djibouti), in contrast to sparse coral cover, cooler temperatures, and upwelling at the eastern end (southern Oman). We tested for barriers to dispersal across this region (including the Gulf of Aden and Gulf of Oman), using mitochondrial DNA surveys of 11 reef fishes. Study species included seven taxa from six families with broad distributions across the Indo-Pacific and four species restricted to the Arabian Sea (and adjacent areas). Nine species showed no significant genetic partitions, indicating connectivity among contrasting environments spread across 2000 km. One butterflyfish (Chaetodon melannotus) and a snapper (Lutjanus kasmira) showed phylogenetic divergences of d = 0.008 and 0.048, respectively, possibly indicating cryptic species within these broadly distributed taxa. These genetic partitions at the western periphery of the Indo-Pacific reflect similar partitions recently discovered at the eastern periphery of the Indo-Pacific (the Hawaiian and the Marquesan Archipelagos), indicating that these disjunctive habitats at the ends of the range may serve as evolutionary incubators for coral reef organisms. © 2017 Springer-Verlag Berlin HeidelbergTh

    Evolution in Australasian Mangrove Forests: Multilocus Phylogenetic Analysis of the Gerygone Warblers (Aves: Acanthizidae)

    Get PDF
    The mangrove forests of Australasia have many endemic bird species but their evolution and radiation in those habitats has been little studied. One genus with several mangrove specialist species is Gerygone (Passeriformes: Acanthizidae). The phylogeny of the Acanthizidae is reasonably well understood but limited taxon sampling for Gerygone has constrained understanding of its evolution and historical biogeography in mangroves. Here we report on a phylogenetic analysis of Gerygone based on comprehensive taxon sampling and a multilocus dataset of thirteen loci spread across the avian genome (eleven nuclear and two mitochondrial loci). Since Gerygone includes three species restricted to Australia's coastal mangrove forests, we particularly sought to understand the biogeography of their evolution in that ecosystem. Analyses of individual loci, as well as of a concatenated dataset drawn from previous molecular studies indicates that the genus as currently defined is not monophyletic, and that the Grey Gerygone (G. cinerea) from New Guinea should be transferred to the genus Acanthiza. The multilocus approach has permitted the nuanced view of the group's evolution into mangrove ecosystems having occurred on multiple occasions, in three non-overlapping time frames, most likely first by the G. magnirostris lineage, and subsequently followed by those of G. tenebrosa and G. levigaster

    Apelin Deficiency Accelerates the Progression of Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective loss of motor neurons. Recent studies have implicated that chronic hypoxia and insufficient vascular endothelial growth factor (VEGF)-dependent neuroprotection may lead to the degeneration of motor neurons in ALS. Expression of apelin, an endogenous ligand for the G protein-coupled receptor APJ, is regulated by hypoxia. In addition, recent reports suggest that apelin protects neurons against glutamate-induced excitotoxicity. Here, we examined whether apelin is an endogenous neuroprotective factor using SOD1G93A mouse model of ALS. In mouse CNS tissues, the highest expressions of both apelin and APJ mRNAs were detected in spinal cord. APJ immunoreactivity was observed in neuronal cell bodies located in gray matter of spinal cord. Although apelin mRNA expression in the spinal cord of wild-type mice was not changed from 4 to 18 weeks age, that of SOD1G93A mice was reduced along with the paralytic phenotype. In addition, double mutant apelin-deficient and SOD1G93A displayed the disease phenotypes earlier than SOD1G93A littermates. Immunohistochemical observation revealed that the number of motor neurons was decreased and microglia were activated in the spinal cord of the double mutant mice, indicating that apelin deficiency pathologically accelerated the progression of ALS. Furthermore, we showed that apelin enhanced the protective effect of VEGF on H2O2-induced neuronal death in primary neurons. These results suggest that apelin/APJ system in the spinal cord has a neuroprotective effect against the pathogenesis of ALS

    Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Determining an absolute timescale for avian evolutionary history has proven contentious. The two sources of information available, paleontological data and inference from extant molecular genetic sequences (colloquially, 'rocks' and 'clocks'), have appeared irreconcilable; the fossil record supports a Cenozoic origin for most modern lineages, whereas molecular genetic estimates suggest that these same lineages originated deep within the Cretaceous and survived the K-Pg (Cretaceous-Paleogene; formerly Cretaceous-Tertiary or K-T) mass-extinction event. These two sources of data therefore appear to support fundamentally different models of avian evolution. The paradox has been speculated to reflect deficiencies in the fossil record, unrecognized biases in the treatment of genetic data or both. Here we attempt to explore uncertainty and limit bias entering into molecular divergence time estimates through: (i) improved taxon (<it>n </it>= 135) and character (<it>n = </it>4594 bp mtDNA) sampling; (ii) inclusion of multiple cladistically tested internal fossil calibration points (<it>n </it>= 18); (iii) correction for lineage-specific rate heterogeneity using a variety of methods (<it>n </it>= 5); (iv) accommodation of uncertainty in tree topology; and (v) testing for possible effects of episodic evolution.</p> <p>Results</p> <p>The various 'relaxed clock' methods all indicate that the major (basal) lineages of modern birds originated deep within the Cretaceous, although temporal intraordinal diversification patterns differ across methods. We find that topological uncertainty had a systematic but minor influence on date estimates for the origins of major clades, and Bayesian analyses assuming fixed topologies deliver similar results to analyses with unconstrained topologies. We also find that, contrary to expectation, rates of substitution are not autocorrelated across the tree in an ancestor-descendent fashion. Finally, we find no signature of episodic molecular evolution related to either speciation events or the K-Pg boundary that could systematically mislead inferences from genetic data.</p> <p>Conclusion</p> <p>The 'rock-clock' gap has been interpreted by some to be a result of the vagaries of molecular genetic divergence time estimates. However, despite measures to explore different forms of uncertainty in several key parameters, we fail to reconcile molecular genetic divergence time estimates with dates taken from the fossil record; instead, we find strong support for an ancient origin of modern bird lineages, with many extant orders and families arising in the mid-Cretaceous, consistent with previous molecular estimates. Although there is ample room for improvement on both sides of the 'rock-clock' divide (e.g. accounting for 'ghost' lineages in the fossil record and developing more realistic models of rate evolution for molecular genetic sequences), the consistent and conspicuous disagreement between these two sources of data more likely reflects a genuine difference between estimated ages of (i) stem-group origins and (ii) crown-group morphological diversifications, respectively. Further progress on this problem will benefit from greater communication between paleontologists and molecular phylogeneticists in accounting for error in avian lineage age estimates.</p

    An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior

    No full text
    Developmental nicotine exposure causes persistent changes in cortical neuron morphology and in behavior. We used microarray screening to identify master transcriptional or epigenetic regulators mediating these effects of nicotine and discovered increases in Ash2lmRNA, encoding a component of a histone methyltransferase complex. We therefore examined genome-wide changes in trimethylation of histone H3 on Lys4 (H3K4me3), a mark induced by the Ash2l complex associated with increased gene transcription. A large proportion of regulated promoter sites were involved in synapse maintenance. We found that Mef2c interacts with Ash2l and mediates changes in H3K4me3. Knockdown of Ash2l or Mef2c abolished nicotine-mediated alterations of dendritic complexity in vitro and in vivo, and attenuated nicotine-dependent changes in passive avoidance behavior. In contrast, overexpression mimicked nicotine-mediated alterations of neuronal structure and passive avoidance behavior. These studies identify Ash2l as a target induced by nicotinic stimulation that couples developmental nicotine exposure to changes in brain epigenetic marks, neuronal structure and behavior

    Phylogeny and Taxonomy of the Round-Eared Sengis or Elephant-Shrews, Genus Macroscelides (Mammalia, Afrotheria, Macroscelidea)

    Get PDF
    The round-eared sengis or elephant-shrews (genus Macroscelides) exhibit striking pelage variation throughout their ranges. Over ten taxonomic names have been proposed to describe this variation, but currently only two taxa are recognized (M. proboscideus proboscideus and M. p. flavicaudatus). Here, we review the taxonomic history of Macroscelides, and we use data on the geographic distribution, morphology, and mitochondrial DNA sequence to evaluate the current taxonomy. Our data support only two taxa that correspond to the currently recognized subspecies M. p. proboscideus and M. p. flavicaudatus. Mitochondrial haplotypes of these two taxa are reciprocally monophyletic with over 13% uncorrected sequence divergence between them. PCA analysis of 14 morphological characters (mostly cranial) grouped the two taxa into non-overlapping clusters, and body mass alone is a relatively reliable distinguishing character throughout much of Macroscelides range. Although fieldworkers were unable to find sympatric populations, the two taxa were found within 50 km of each other, and genetic analysis showed no evidence of gene flow. Based upon corroborating genetic data, morphological data, near sympatry with no evidence of gene flow, and differences in habitat use, we elevate these two forms to full species

    High Connectivity in the Deepwater Snapper Pristipomoides filamentosus (Lutjanidae) across the Indo-Pacific with Isolation of the Hawaiian Archipelago

    Get PDF
    In the tropical Indo-Pacific, most phylogeographic studies have focused on the shallow-water taxa that inhabit reefs to approximately 30 m depth. Little is known about the large predatory fishes, primarily snappers (subfamily Etelinae) and groupers (subfamily Epinephelinae) that occur at 100–400 m. These long-lived, slow-growing species support fisheries across the Indo-Pacific, yet no comprehensive genetic surveys within this group have been conducted. Here we contribute the first range-wide survey of a deepwater Indo-Pacific snapper, Pristipomoides filamentosus, with special focus on Hawai'i. We applied mtDNA cytochrome b and 11 microsatellite loci to 26 samples (N = 1,222) collected across 17,000 km from Hawai'i to the western Indian Ocean. Results indicate that P. filamentosus is a highly dispersive species with low but significant population structure (mtDNA ΦST = 0.029, microsatellite FST = 0.029) due entirely to the isolation of Hawai'i. No population structure was detected across 14,000 km of the Indo-Pacific from Tonga in the Central Pacific to the Seychelles in the western Indian Ocean, a pattern rarely observed in reef species. Despite a long pelagic phase (60–180 days), interisland dispersal as adults, and extensive gene flow across the Indo-Pacific, P. filamentosus is unable to maintain population connectivity with Hawai'i. Coalescent analyses indicate that P. filamentosus may have colonized Hawai'i 26 K–52 K y ago against prevailing currents, with dispersal away from Hawai'i dominating migration estimates. P. filamentosus harbors low genetic diversity in Hawai'i, a common pattern in marine fishes, and our data indicate a single archipelago-wide stock. However, like the Hawaiian Grouper, Hyporthodus quernus, this snapper had several significant pairwise comparisons (FST) clustered around the middle of the archipelago (St. Rogatien, Brooks Banks, Gardner) indicating that this region may be isolated or (more likely) receives input from Johnston Atoll to the south

    An Estimation of Erinaceidae Phylogeny: A Combined Analysis Approach

    Get PDF
    BACKGROUND: Erinaceidae is a family of small mammals that include the spiny hedgehogs (Erinaceinae) and the silky-furred moonrats and gymnures (Galericinae). These animals are widely distributed across Eurasia and Africa, from the tundra to the tropics and the deserts to damp forests. The importance of these animals lies in the fact that they are the oldest known living placental mammals, which are well represented in the fossil record, a rarity fact given their size and vulnerability to destruction during fossilization. Although the Family has been well studied, their phylogenetic relationships remain controversial. To test previous phylogenetic hypotheses, we combined molecular and morphological data sets, including representatives of all the genera. METHODOLOGY AND PRINCIPAL FINDINGS: We included in the analyses 3,218 bp mitochondrial genes, one hundred and thirty-five morphological characters, twenty-two extant erinaceid taxa, and five outgroup taxa. Phylogenetic relationships were reconstructed using both partitioned and combined data sets. As in previous analyses, our results strongly support the monophyly of both subfamilies (Galericinae and Erinaceinae), the Hylomys group (to include Neotetracus and Neohylomys), and a sister-relationship of Atelerix and Erinaceus. As well, we verified that the extremely long branch lengths within the Galericinae are consistent with their fossil records. Not surprisingly, we found significant incongruence between the phylogenetic signals of the genes and the morphological characters, specifically in the case of Hylomys parvus, Mesechinus, and relationships between Hemiechinus and Paraechinus. CONCLUSIONS: Although we discovered new clues to understanding the evolutionary relationships within the Erinaceidae, our results nonetheless, strongly suggest that more robust analyses employing more complete taxon sampling (to include fossils) and multiple unlinked genes would greatly enhance our understanding of the Erinaceidae. Until then, we have left the nomenclature of the taxa unchanged; hence it does not yet precisely reflect their phylogenetic relationships or the depth of their genetic diversity

    Molecular Poltergeists: Mitochondrial DNA Copies (numts) in Sequenced Nuclear Genomes

    Get PDF
    The natural transfer of DNA from mitochondria to the nucleus generates nuclear copies of mitochondrial DNA (numts) and is an ongoing evolutionary process, as genome sequences attest. In humans, five different numts cause genetic disease and a dozen human loci are polymorphic for the presence of numts, underscoring the rapid rate at which mitochondrial sequences reach the nucleus over evolutionary time. In the laboratory and in nature, numts enter the nuclear DNA via non-homolgous end joining (NHEJ) at double-strand breaks (DSBs). The frequency of numt insertions among 85 sequenced eukaryotic genomes reveal that numt content is strongly correlated with genome size, suggesting that the numt insertion rate might be limited by DSB frequency. Polymorphic numts in humans link maternally inherited mitochondrial genotypes to nuclear DNA haplotypes during the past, offering new opportunities to associate nuclear markers with mitochondrial markers back in time
    corecore